Математическая энциклопедия

МАМФОРДА ГИПОТЕЗА

- гипотеза о том, что всякая полупростая алгебраич. группа Gгеометрически редуктивна, т. е. обладает следующим свойством: для любого рационального представления группы Gв конечномерном векторном пространстве Vи любого неподвижного относительно Gненулевого вектора существует G-инвариантный однородный многочлен f положительной степени на пространствеV,для к-рого

Гипотеза была сформулирована Д. Мамфордом [1] (в несколько отличном от предыдущего, но эквивалентном ему виде) с целью найти такое свойство полупростых групп, определенных над алгебраически замкнутым полем произвольной характеристики, к-рое могло бы служить равноценной - с точки зрения геометрич.инвариантов теории -заменой классич. свойства полной приводимости рациональных линейных представлений полупростых групп, определенных над полем нулевой характеристики (это последнее свойство не имеет места в случае положительной характеристики основного поля), и позволило бы снять ограничение на характеристику основного поля в ряде центральных результатов геометрич. теории инвариантов (в первую очередь, в теореме о конечной порожденноеЩ алгебры инвариантов редуктивной группы автоморфизмов алгебры конечного типа над полем, см.Гильберта теоремаоб инвариантах).

Если характеристика основного поля kравна нулю, то доказательство М. г. дается классич. теоремой Вейля о полной приводимости рациональных представлений полупростых групп (см. [2]): в этом случае к инвариантной прямойL=kvв пространстве Vимеется инвариантное дополнение Г (т. е. такая инвариантная однородная гиперповерхность Г степени 1 в V, что ), и в качестве f можно взять линейную форму, являющуюся уравнением Г.В случае поля kположительной характеристики рМ. г. обобщает этот факт, также утверждая, что существует инвариантная однородная гиперповерхность Г в V, для к-рой но только степень Г не обязательно равна 1 (в оригинальной постановке М. г. утверждает также, что эта степень равнарnдля нек-рого целого п).

М. г. эквивалентна также утверждению о том, что для любого регулярного действия полупростой группы G на аффинном алгебраич. многообразии Xи любых двух замкнутых непересекающихся инвариантных подмножествX1иХ2в Xсуществует инвариантная регулярная функция hнаX,для к-рой h(X1)=0и h(X2)=1(т. е.X1иХ2разделяются регулярными инвариантами, см. [3]).

Впервые М. г. доказана в [4] (включая и гипотезу о степени формы); это доказательство распространено в [5] на общий случай редуктивных групповых схем над кольцом.

Доказательство М. г. вместе с результатами работ [6], [10] позволило, во-первых, придать окончательную форму обобщению теоремы Гильберта об инвариантах: если R- алгебра конечного типа над полем k, G - редуктивная рациональная группа ее k-автоморфизмов иRG-подалгебра всех G-инвариантных элементов в R, тоRG- также алгебра конечного типа над k;и, во-вторых, позволило установить, что линейная алгебраич. группа над полем произвольной характеристики геометрически редуктивна тогда и только тогда, когда она редуктивна. М. г. имеет приложения в геометрич. теории инвариантов и теории модулей (см. [7] - [9]).

Лит.:[1] М u m f о r d D., Geometric Invariant Theory, В. ta. o.J, 1965; [2] F о р a r t у J., Invariant theory, N. Y.- Amst., 1969; [3] Дьедонне Ж., К е р о л л Д ж., М а м ф о р д Д., Геометрическая теория инвариантов, пер. с англ., М., 1974: [4] Haboush W. J., "Ann. Math.", 1975, v. 102, p. 67-83; [5] S e s h a d r i G. S., "Adv. Math." 1977, Лг 26, p. 225 - 74; [6] N а g a t a M., "J. Math. Куото Univ.", 1964, № 3, p. 369-77; [7] Seshadri C. S., в кн.: Algebraic geometry. Papers presented at the Bombay colloquium. 1968, L., 1969, p. 347-71: [8] Р о р р Н., Moduli theory and classification theory of algebraic varieties, B. [a. o.], 1977; [9] S e s h a d r i C. S., "Proc. Symp. Pure Math.", 1975, v. 29, p. 263-304; [10] Nagata M., Miyata Т., "J. Math. Kyoto Univ.", 1964,N, S,p. 379-82.В. Л. Попов.