Химическая энциклопедия

МАГНИТНЫЕ МАТЕРИАЛЫ

в-ва, магн. св-ва к-рых обусловливают их применение в технике (электротехнике, вычислит. технике, электронике, радиотехнике и др. областях). Hаиб. применение находят магнитоупорядоченные в-ва: ферро-, ферри- и антиферромагнетики, в состав к-рых входят нек-рые элементы с незаполненными 3d-или 4f-электронными оболочками, атомы или ионы к-рых обладают магн. моментами. К ферромагнетикам относятся в осн. металлы и сплавы Fe, Co и Сu, РЗЭ (Nd, Sm, Gd, Tb, Dy и др.), нек-рые соед. Mn и Сr, напр. MnBi, MnAl, CrPt; к ферримагнетикам - ферриты-шпинели MFe2O4(M - Fe, Ni, Со, Mn, Mg, Zn, Сu), ферриты-гранаты R3Fe5O12(R - РЗЭ), гексаферриты PbFe12O19, Ba2Zn2F12O22и др., интерметаллич. соед. RFe2, RCo5, RFe14и др. М. м. могут быть металлы (в осн. ферромагнетики), диэлектрики и полупроводники (гл. обр. ферри- и антиферромагнетики). Осн. характеристика М. м, - намагниченность М, к-рая определяется как магн. момент единицы объема в-ва. Единица намагниченности в СИ - А/м. Зависимость Мот напряженности поля H для ферро- и ферримагнетиков определяется кривой намагничивания с петлей гистерезиса (рис.). Если напряженность поля достаточна для намагничивания образца до насыщения, соответствующая петля гистерезиса наз. предельной; множество др. возможных петель, получаемых при меньших значениях H и лежащих внутри предельной петли, наз. частными (непредельными). Если до начала действия внеш. поля образец был полностью размагничен, кривая зависимости М от H наз. основной кривой намагничивания.

Кривые намагничивания и размагничивания ферромагнетика:Н-> напряженность внеш.магн. поля;М-> намагниченность образца;Нc-> коэрцитивная сила;Мr- остаточная намагниченность;Мs- намагниченность насыщения; 1 - предельная петля гистерезиса; 2 - непредельная (частная) петля; 3 - начальная кривая намагничивания.

Др. важные параметры М. м.: 1. Остаточная намагниченностьМr[или остаточная магн. индукцияВr,единица измерения - тесла (Тл)]; количественно оценивается величиной намагниченности, сохраняющейся в образце после того, как он был намагничен внеш. магн. полем до насыщения, а затем напряженность поля сведена до нуля. ВеличинаМr(Вr)существенно зависит от формы образца, его кристаллич. структуры, т-ры, мех. воздействий (удары, сотрясения и т. п.) и др. факторов. 2. Коэрцитивная силас; измеряется в А/м; количественно определяется как напряженность поля, необходимая для изменения намагниченности тела от значенияМrдо нуля. Зависит от магнитной, кристаллографич. и др. видов анизотропии в-ва, наличия дефектов, способа изготовления образца и его обработки, а также внеш. условий, напр. т-ры. 3. Oтносит. магн. проницаемость m; характеризует изменение магн. индукции Всреды при воздействии поля H; связана смагнитной восприимчивостьюc соотношением: m = 1 + c (в СИ). В ферромагнетиках и ферритах m сложным образом зависит от H; для описания этой зависимости вводят понятия дифференциальной (mдиф), начальной (mн) и максимальной (mмакс) проницаемостей. 4. Макс. уд. магн. энергия Wмакс(в Дж/м3) или пропорциональная ей величина (BH)максна участке размагничивания петли гистерезиса. 5. Намагниченность насыщенияМs(или магн. индукция насыщения Bs). 6.Кюри точка ТK.7. Уд. электрич. сопротивление r (в Ом Х м). В ряде случаев существенны и др. параметры, напр. температурные коэф. остаточной индукции и коэрцитивной силы, характеристики временной стабильности осн. параметров. Из аморфных М. м. наиб. распространены материалы на основе Fe, Ni, Со с аморфизующими добавками В, Р, С, Si, Ge, а также аморфные сплавы РЗЭ с Fe и Со. Аморфные М. м. получают из жидкой фазы сверхбыстрым охлаждением (скорость охлаждения св. 105К/с) либо осаждением из газовой фазы на холодную подложку. При нагр. до 300-450 °С аморфные М. м. переходят в кристаллич. состояние. Композиционными М. м. наз. материалы, изготовленные из ферромагн. металлич. или ферритового порошка с диэлектрич. связующим (бакелитом, полистиролом, резиной, тальком, смолой, жидким стеклом, легкоплавкой стеклоэмалью и др.). Для мн. техн. приложений, гл. обр. в электротехнике и радиоэлектронике, необходимы М. м., обладающие большой величиной остаточной намагниченности. В зависимости от величины коэрцитивной силы различают магнитомягкие и магнитотвердые М. м.
Магнитомягкие М. м.намагничиваются до насыщения и перемагничиваются в сравнительно слабых магн. полях (не св. 4 кА/м). Для них характерны высокие значения магн. проницаемости (mмаксдостигает 106), узкая петля магн. гистерезиса, малые потери энергии при перемагничивании. Магнитомягкими М. м. являются: 1) электротехн. железо и стали (низкоуглеродистые и кремнистые); 2) кристаллич. сплавы на основе Fe-Ni - в т. ч. бинарные (пермаллои) и легированные Мо (суперпермаллои), Mn (муметалл), Сr, Ti, Nb, Сu, Аl (изопермы); на основе Fe-Co с добавками V (пермендюры); на основе Fe-Ni-Co с добавками Mn и Сr (перминвары); на основе Fe-Al (алферы, алфенолы) и Fe-Si-Al (алсиферы, сендасты и др.); 3) аморфные сплавы на основе Fe (типа 80% Fe, 20% В), Fe-Ni (типа 40% Fe, 40% Ni, 20% SiB), Co-Fe (типа 70% Co, 5% Fe, 10% Si, 15% B), Co-Zr, Co-Zr-Mo; 4) ферриты-шпинели, ферриты-гранаты, ортоферриты (со структурой перовскита); 5) композиты ферромагн. металлич. порошка (карбонильное железо, пермаллой, алсифер) с диэлектрич. связующим на основе смол (напр., шеллака), полистирола, жидкого стекла, талька и т. п. (магнитодиэлектрики). Металлич. магнитомягкие М. м. обладают наиб. значениями магн. проницаемости (напр., у суперпермаллоя mмакс= 106при коэрцитивной силе Hс= 0,3 А/м) и магн. индукции насыщения (напр., у пермендюраs =>2,4 Тл), температурной стабильностью св-в. Аморфные сплавы (обычно изготовляют в виде тонкой ленты) сочетают высокие магн. св-ва с хорошими прочностными характеристиками, коррозионной стойкостью, температурной и деформац. стабильностью. Ферриты и магнитодиэлектрики характеризуются сравнительно небольшими значениями магн. характеристик (начальная магн. восприимчивость mн= 5.104- 2.104,s= 0,3-0,5 Тл, Hс= 3.103А/м) и высоким уд. электрич. сопротивлением (r ~ 1014Ом. м). Магн. и электрич. св-ва ферритов можно регулировать изменением хим. состава, режимов спекания и термообработки. Магнитомягкие М. м. применяют для изготовления магнитопроводов, трансформаторов и магн. усилителей, дросселей, реле, дефектоскопов, магн. головок для видео- и звукозаписи, магн. экранов, сердечников высокодобротных катушек индуктивности (в колебат. контурах, электрич. фильтрах, элементах памяти и др.), линий задержки. Металлич. М. м. используют в осн. для работы на частотах переменного поля до неск. десятков кГц, т. к. из-за относительно низкого уд. электрич. сопротивления при повышении рабочей частоты в них резко возрастают вихревые токи. Это приводит к снижению эффективного сечения магнитопроводов и повышению потерь на перемагничивание. Ферриты используют для работы на частотах до неск. МГц. Композиционные М. м. применяют для создания экранирующих устройств от СВЧ полей; металлич. компоненты материалов используют в виде пленок или мелкодисперсных порошков. Многокомпонентные слоистые материалы с ферромагн. составляющей позволяют создавать поглотители полей с миним. геом. размерами.
Магнитотвердые М. м.(магнитожесткие, высококоэрцитивные М. м.) намагничиваются до насыщения и перемагничиваются в относительно сильных магн. полях (св. 4 кА/м). Высококоэрцитивными М. м. иногда наз. только М. м. с коэрцитивной силойНс>>20 кА/м. Магнитотвердые М. м. применяют как постоянные магниты, в качестве носителей магн. памяти, в гистеррезисных двигателях, разл. мех. удерживающих устройствах, в узлах радиоаппаратуры и др. Выделяют след. группы магнитотвердых М. м.:
1. Стали, закаливаемые на мартенсит (углеродистые, легированные Сr, W, Со). Они обладают сравнительно малыми Hс(4-12 кА/м) и Wмакс(0,6-1,4 кДж/м3).
2. Диффузионно-твердеющие сплавы на основе Fe-Ni-Аl (ални) с добавками Со, Сu, Ti и др. Значения магн. параметров этой группы М. м. зависит от состава и наличия текстуры (кристаллографич., магнитной). В целом они характеризуются умеренными значениямиНс(36-145 кА/м), высокими значениямиВr(0,5-1,4 Тл) и Wмакс(3,6-40 кДж/м3), наименьшими из всех М. м. температурными коэффициентами основных параметров (температурный диапазон использования до 770 К); эти М. м. хрупки, обрабатываются только шлифованием.
3. Дисперсионно-твердеющие сплавы Fe-Ni-Сu (кунифе), Co-Ni-Cu (кунико), Fe-Co-V (викаллой), Fe-Cr-Co и др. По своим магн. св-вам они близки к диффузионно-твердеющим сплавам, но менее хрупки и подвергаются обработке давлением, а нек-рые - и термомагнитообработке. Применение диффузионно-твердеющих и дисперсионно-твердеющих сплавов ограниченно из-за дефицитности ряда компонентов (особенно Со).
4. Сплавы с использованием благородных металлов (напр., Pt, Ir, Pd) с высокими значениями коэрцитивной силы (до 400 кА/м). Применение их также весьма ограниченно из-за высокой стоимости. Сплавы Co-Pt, однако, применяют для изготовления сверхминиатюрных магнитов, т. к. они обладают высокой пластичностью, допускающей холодную вытяжку в тонкую проволоку.
5. Бариевые и стронциевые ферриты с гексагон. кристаллич. решеткой и кобальтовый феррит со структурой шпинели. Характеризуются сравнительно низкими значениямиВr(0,19-0,42 Тл), весьма высокими Hc(130-350 кА/м) и Wмакс(3-18 кДж/м3), температурной стабильностью (вплоть до 700 К), высоким уд. электрич. сопротивлением. Последнее обусловливает их широкое применение при высоких частотах переменного поля. Достоинство всех магнитотвердых ферритов - высокое уд. электрич. сопротивление, позволяющее применять их при высоких частотах переменного поля. Доступность компонентов гексагон. бариевых и стронциевых ферритов, возможность автоматизации произ-ва постоянных магнитов из них и невысокая стоимость обусловили широкое применение этих М. м. в разл. областях техники. Осн. недостатки ферритовых М. м. - высокая твердость, хрупкость, ограниченный температурный диапазон использования (230-500 К).
6. Интерметаллич. соед. металлов группы железа с РЗЭ. Обладают очень высокой кристаллич. анизотропией. Распространены бинарные сплавы "редкая земля - кобальт", напр. SmCo5, квазибинарные соед. "2-17" типа R2(CoFe)17. На основе таких сплавов разработаны М. м. с рекордными значениями Hс(640-1300 кА/м) и Wмакс(55-80 кДж/м3) при достаточно высокихВr(0,77-1,0 Тл) и удовлетворит. характеристиках температурной стабильности. Недостатки этих М. м. - высокая твердость, хрупкость, дороговизна. Применяют их в осн. в таких системах, где важно снижение массы и габаритных размеров магнитов. Разработаны также составы типа "редкая земля - железо - бор", напр. Nd2Fe14B, (YEr)2Fe14B. Такие М. м. не только обладают высокими значениями магн. энергии (BH)максно и значительно дешевле, чем SmCo5.
7. Композиционные М. м. на основе порошкообразных ферритов и интерметаллич. в-в (5-я и 6-я группы) и связующего. Различают магнитопласты (связующее - пластич. масса) и магнитоэласты (связующее - каучук). Из-за сравнительно большого кол-ва немагнитных компонентов эти М. м. по своим магн. параметрам хуже, чем материал исходного порошка, но они значительно более технологичны и позволяют изготовлять магниты сложной формы.
8. Материалы для магн. записи, получаемые нанесением М. м. в виде тонкой пленки или тонкодисперсного порошка на немагн. подложку. Используют порошки оксидов переходных металлов, ферритов или покрытия из сплавов Co-Ni, Co-Pt, Co-W, Co-Ni-P, Co-Ni-Cr, Со-Сr и др., получаемые вакуумным напылением, гальванопластич. или хим. осаждением. При создании таких М. м. стремятся получить наиб.Вrи умереннуюНс(обычно 20-80 кА/м в зависимости от плотности записи, способа записи информации и т. п.). Перспективными материалами для магнитооптич. записи информации являются высококоэрцитивные аморфные пленки на основе соед. типа "редкая земля -железо - кобальт" (Tb-Fe, Cd-Tb-Co, Tb-Gd-Fe-Co, Nd-Dy-Fe-Со); их коэрцитивная силаНс= (1 - 5).105А/м.
Специальные М. м.обладают св-вами, к-рые обеспечивают им важные, но сравнительно узкие области применения. Магнитострикционные М. м. - ферромагн. металлы и сплавы, а также ферриты, обладающие достаточно большой магнитострикцией, т. е. изменением размеров образца при его намагничивании и размагничивании. Магнитострикц. материалы используют в излучателях и приемниках звука и ультразвука и в др. устройствах, преобразующих энергию электромагн. поля в механическую и обратно. Магнитострикц. материалами являются: никель, НП2Т (Ni св. 98%), сплавы - пермендюр, 49 КФ (49% Со, 2% V, остальное Fe), алфер (12,5% Аl, остальное Fe), никоей (4% Со, 2% Si, остальное Ni), керамич. ферриты-шпинели на основе Ni, Со, Сu. Перспективные магнитострикц. материалы - интерметаллич. соед. типа RFe2, где R - Y, Tb, Dy, напр. Тb0,27Dy0,73Fe2. В приборостроении и измерит, технике широко применяют инварные сплавы с низким коэф. термич. расширения и элинварные сплавы, обладающие малым температурным коэф. упругости. Такими св-вами обладают сплавы Fe-Ni, Fe-Pt, Fe-Ni-Co, Fe-Ni-Сr, Fe-Co-Сr. Термомагнитные материалы - ферромагн. сплавы с сильной зависимостью остаточной намагниченности от т-ры. Их применяют для компенсации температурных изменений магн. потоков в приборах и реле, момент срабатывания к-рых зависит от т-ры. К термомагн. материалам относятся сплавы Ni-Fe-Cr, Ni-Cu (кальмаллои), Ni-Fe (термаллои) и др. Магнитооптич. М. м. способны вращать плоскость поляризации света, прошедшего через образец или отраженного от него (см.Керра эффект),и используются для управления световыми потоками (в лазерной технике и оптоэлектронике). Относительно прозрачные в ближнем ИК диапазоне ферриты-гранаты [напр., (YBi)3Fe5Ol2], ферриты-шпинели, ортоферриты и др. применяют в устройствах, предназначенных для пространственно-временной модуляции света. Непрозрачные М. м. на основе интерметаллич. соед., напр. РЗЭ с элементами подгруппы железа, а также на основе MnBi, MnAs служат в качестве запоминающей среды в магнитооптич. запоминающих устройствах. СВЧ М. м. применяют в радиоэлектронике, для изготовления волноводов, фазовращателей, преобразователей частоты, модуляторов, усилителей и т. п. Специфич. требованиями к М. м. для СВЧ диапазона являются: высокая чувствительность к управляющему магн. полю, высокое уд. электрич. сопротивление, малые электромагн. потери, высокая т-ра Кюри. наиб. распространены никелевые, никель-медно-марганцевые ферриты-шпинели, иттриевый феррит-гранат, легированный РЗЭ. Применяют металлич. сплавы Fe-Ni, Fe-Al, Fe-Al-Cr. Их используют гл. обр. для создания поглотителей мощности в разл. изделиях СВЧ техники. Композиционные СВЧ М. м. используют для создания экранов для защиты от СВЧ полей. Металлич. наполнителями являются Fe, Co, Ni, сплавы сендаст; связующими - разл. полимерные смолы и эластомеры. Жидкие М. м., или магн. жидкости, представляют собой однородную взвесь мелких (10-3-10-1мкм) ферромагн. частиц в воде, керосине, веретенном масле, фторуглеводородах, сложных эфирах, жидких металлах. Магн. жидкости применяют для визуализации структуры постоянных магн. полей и доменной структуры ферромагнетиков, в качестве рабочей среды магнитоуправляемых поляризац. светофильтров, а также при создании гидромех. преобразователей и излучателей звука. Изучаются проблемы, связанные с использованием магн. жидкостей в биологии и медицине, напр. для управляемого рентгеновского контрастирования полых органов, создания депо лек. препаратов, локального повышения т-ры.Лит.:Преображенский А. А., Теория магнетизма, магнитные материалы и элементы, М., 1972; Сергеев В. В., Булыгина Т. И., Магнитотвердые материалы, М., 1980; Мишин Д. Д., Магнитные материалы, М., 1981; Ковнеристый Ю. К., Лазарева И. Ю., Раваев А. А., Материалы, поглощающие СВЧ-излучения, М., 1982; Прецизионные сплавы. Справочник, под ред. Б. В. Молотилова, 2 изд., М., 1983; Белов К. П., Магнитострикционные явления и их технические приложения, М., 1987; Звездин А. К., Котов В. А., Магнитооптика тонких пленок, М., 1988.А. К. Звездин.


  1. магнитные материалыМАГНИТНЫЕ МАТЕРИАЛЫ вещества существенно изменяющие значение магнитного поля в крое они помещены. Ещ в древности был известен природный намагниченный минерал магнетит iиз...Большая советская энциклопедия
  2. магнитные материалывещества существенно изменяющие значение магнитного поля в которое они помещены. Ещ в древности был известен природный намагниченный минерал магнетит из которого в Китае ...Большая Советская энциклопедия II
  3. магнитные материалыприменяются в технике для изготовлениямагнитопроводов постоянных магнитов носителей информации магнитныедиски барабаны ленты и т. п. Разделяются на магнитомягкие имагнито...Большой энциклопедический словарь II
  4. магнитные материалыМАГНИТНЫЕ МАТЕРИАЛЫ применяются в технике для изготовления магнитопроводов постоянных магнитов носителей информации магнитные диски барабаны ленты и т. п. Разделяются на ...Большой энциклопедический словарь III
  5. магнитные материалыМАГНИТНЫЕ МАТЕРИАЛЫ применяются в технике для изготовления магнитопроводов постоянных магнитов носителей информации магнитные диски барабаны ленты и т. п. Разделяются на...Большой Энциклопедический словарь V
  6. магнитные материалыприменяются в тех нике для изготовления магнитопроводов пост магнитов носителей информации магн. диски барабаны ленты и т. п. Разделяются на магнитомягкие и магнитотврдые...Естествознание. Энциклопедический словарь
  7. магнитные материалыМАГНИТНЫЕ МАТЕРИАЛЫ применяются в технике для изготовления магнитопроводов постоянных магнитов носителей информации магнитные диски барабаны ленты и т. п. Разделяются на ...Современный энциклопедический словарь
  8. магнитные материалывещества обладающие при темпpax ниже темпры магн. упорядочения самопроизвольной намагниченностью обусловленной параллельной ориентацией атомных магн. моментов ферромагне...Физическая энциклопедия
  9. магнитные материалывещества магн. свва крых обусловливают их широкое применение в электротехнике автоматике телемеханике приборостроении пост. магниты электромагниты статоры и роторы электр...Физическая энциклопедия
  10. магнитные материалыМАГНИТНЫЕ МАТЕРИАЛЫ применяются в технике для изготовления магнитопроводов постоянных магнитов носителей информации магнитные диски барабаны ленты и т. п. Разделяются на...Энциклопедический словарь естествознания
  11. магнитные материалымагнитные материалы вещества обладающие магнитными свойствами и изменяющие магнитное поле в которое они помещены. Ими могут быть металлы и сплавы гл. обр. ферромагнетики ...Энциклопедия техники