Физическая энциклопедия

ЯДЕРНЫЕ РЕАКЦИИ


превращения ат. ядер при вз-ствии с ч-цами, в т. ч. с g-квантами или друг с другом. Для осуществления Я. р. необходимо сближение ч-ц (двух ядер, ядра и нуклона и т. д.) на расстояние — 10-13 см. Энергия налетающих положительно заряж. ч-ц должна быть порядка или больше высоты кулоновского потенц. барьера ядер (для однозарядных ч-ц =10 МэВ). В этом случае Я. р., как правило, осуществляются бомбардировкой мишеней пучками ускоренных ч-ц. Для отрицательно заряж. и нейтральных ч-ц кулоновский барьер отсутствует, и Я. р. могут протекать даже при тепловых энергиях налетающих ч-ц.
Я. р. записывают в виде: A (a, bcd) В, где А — ядро мишени, а — бомбардирующая ч-ца, b, с, d — испускаемые в Я. р. ч-цы, В — остаточное ядро (в скобках записываются более лёгкие продукты реакции, вне — более тяжёлые). Часто Я. р. может идти неск. способами, напр.:
63Cu (р, n) 63Zn; 63Cu (p, 2n) 62Zn;
63Cu(p, pn) 62Cu; 63 Cu (р, р) 63Cu,
63Cu (р, р') 63Cu* (неупругое рассеяние протонов)
Совокупность сталкивающихся ч-ц в определённом квант. состоянии (напр., р и ядро 63Cu) наз. входным каналом Я. р. Ч-цы, рождающиеся в результате Я. р., в определённых квант. состояниях (напр., n и ядро 63Zn с определённым орбит. моментом и проекцией спинов на выделенное направление) образуют выходной канал Я. р.
Я. р.— осн. метод изучения структуры ядра и его св-в (см. ЯДРО АТОМНОЕ). Я. р. подчиняются законам сохранения электрич. заряда, барионного заряда, энергии и импульса. Я. р. могут протекать с выделением и с поглощением энергии Q, к-рая примерно в 106 раз превышает энергию, поглощаемую или выделяемую при хим.реакциях. Поэтому в Я. р. можно заметить изменение масс взаимодействующих ядер: согласно закону сохранения энергии, энергия Q, выделяемая или поглощаемая при Я. р., равна разности сумм масс ч-ц (в энергетич. ед.) до и после Я. р.
Сечение в выход Я. р. Сечения Я. р. а зависят от энергии ? налетающей ч-цы, типа Я. р., углов вылета и ориентации спинов ч-ц — продуктов реакции. Величина а колеблется в пределах 10-27—10-21 см2. Если радиус ядра R больше, чем длина волны де Бройля ч-цы l, то макс. сечение Я. р. определяется геом. сечениями ядер sмакс=pR2. Для нуклонов с энергией ?»10/A2/3 МэВ, l»R В области малых энергий l->R и сечение s определяется уже не величиной R, а значением l, напр. для медленных нейтронов sмакс»pl2. В промежуточной области энергии sмакс =pя(R+l)2.
Выход Я. р.— отношение W числа актов N Я. р. к числу ч-ц, упавших на 1 см2 мишени. Для тонкой мишени W=ns, где n — число ядер на 1 см2 поверхности мишени. Для медленных заряж. ч-ц Немало (10-3— 10-6), для ч-ц высоких энергий выход больше. Для нейтронов и p-мезонов выход может достигать 1.
Механизмы Я. р. Налетающая ч-ца, напр. нуклон, может войти в ядро и вылететь из него под др. углом, но с той же энергией (упругое рассеяние). Нуклон может столкнуться непосредственно с нуклоном ядра; при этом, если один • или оба нуклона имеют энергию, большую, чем энергия, необходимая для вылета из ядра, то они могут покинуть ядро без вз-ствия с др. его нуклонами (прямой процесс). Существуют и более сложные прямые процессы, при к-рых энергия налетающей ч-цы передаётся непосредственно одному или небольшой группе нуклонов ядра (см. ПРЯМЫЕ ЯДЕРНЫЕ РЕАКЦИИ). Если энергия, внесённая влетевшей ч-цей, постепенно распределится между мн. нуклонами ядра, то состояния возбуждения ядра будут становиться всё более и более сложными, однако через нек-рое время наступит динамич. равновесие — разл. яд. конфигурации будут возникать и распадаться в образовавшейся системе, наз. составным ядром. Составное ядро неустойчиво и через короткое время распадается. Если в нек-рых конфигурациях энергия одного из нуклонов окажется достаточной для его выброса из ядра, то составное ядро распадается с испусканием нуклона. Если же энергия сосредоточивается в нек-рых группах ч-ц, существующих в составном ядре короткое время, то возможно испускание альфа-частиц, тритонов, дейтронов и др. При энергиях возбуждения составного ядра, меньших энергии, необходимой для отделения от него ч-ц, единств. путь его распада — испускание g-квантов (радиационный захват). Иногда выброс ч-ц происходит до того, как установилось равновесие, т. е. до образования составного ядра (предравновесный распад). Разл. механизмы Я. р. отличаются разным временем протекания. Время протекания у прямых Я. р.— это время, необходимое ч-це, чтобы пройти область пр-ва, занимаемую ядром (=10-22 с). Ср. время жизни составного ядра достигает =10-15 — 10-16 с. При малых энергиях налетающих ч-ц осн. механизм Я. р.— образование составного ядра (за исключением Я. р. с дейтронами). При больших энергиях преобладают прямые процессы.
Хар-р зависимости сечений Я. р. 0 от энергии ? налетающих ч-ц также различен для разных механизмов Я. р. Для прямых Я. р. зависимость s(?) монотонна. В случае составного ядра, при малых ?, наблюдаются максимумы в энергетич. зависимости сечения, к-рые соответствуют уровням энергии составного ядра. В области больших энергий (=15 МэВ для ср. и тяжёлых ядер) уровни энергии составного ядра перекрываются и 0 в среднем монотонно зависит от ?. На этом фоне выделяются более широкие максимумы, соответствующие возбуждению аналоговых состояний ядер, а также гигантские резонансы, Время жизни т возбуждённого ядра связано с полной шириной Г максимумов соотношением: Г=ћ/t.
Особенности Я. р., идущих через образование и распад составного ядра,— симметричное угл. распределение вылетающих ч-ц («вперёд-назад» относительно направления налетающих ч-ц в системе центра инерции), максвелловский энергетич. спектр этих ч-ц (см. МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ) и одинаковость относит. вероятностей выходных каналов разных Я. р. с участием одного и того же составного ядра. Ч-цы — продукты Я. р., как правило, поляризованы, даже если пучок бомбардирующих ч-ц неполяризован. Если пучок поляризован, то наблюдается азимутальная асимметрия вылетающих частиц (см. ПОЛЯРИЗОВАННЫЕ НЕЙТРОНЫ), ОРИЕНТИРОВАННЫЕ ЯДРА).
Я. р. под действием нейтронов в большинстве случаев протекают с поглощением энергии Q. При Я. р. (n,p) для большинства ядер Q невелика (за исключением 3Н и 14N). Для Я. р. (n, a) в случае лёгких ядер Q также невелика (за исключением 6Li и 10В); для ср. и тяжёлых ядер небольшое количество энергии выделяется. Я. р., в к-рых образуется больше двух ч-ц, протекают с поглощением энергии, напр. для Я. р. (n, 2n) Q=10МэВ. Особое место занимает Я. р. деления тяжёлых ядер, к-рая сопровождается выделением большого количества энергии (см. ДЕЛЕНИЕ АТОМНОГО ЯДРА).
В случае медленных нейтронов осн. процесс практически для всех ядер — радиац. захват нейтрона — Я. p. (n, g), т. к. кулоновский барьер ядра препятствует вылету протонов и a-частиц. Исключение составляют 3Н, 14N, для к-рых осн. процесс (n, p), и 6Li, 10В, для к-рых преобладает Я. р. (n, a). Большинство ядер обнаруживает резонансный радиац. захват при ?n большем неск. эВ. С увеличением ?n уменьшается вероятность радиационного захвата нейтронов и увеличивается вероятность их упругого рассеяния ядрами —Я. р. (n, n). Когда ?n становится больше энергии первого возбуждённого состояния ядра-мишени (десятки и сотни кэВ), возможно неупругое рассеяние (n,n'). При ?n=1 —2 МэВ гл. роль играют процессы упругого и неупругого рассеяния, становятся заметными Я. р. (n, p) и (n, a). Когда ?n достигает 5—10 МэВ, преобладают Я. р. (n, 2n).
Я. р. под действием протонов, a-частиц, дейтронов и других ядер. Вз-ствию протонов с ядрами препятствует кулоновский барьер высотой ?0. Сечение s этих Я. р. имеет заметную величину начиная с ?р=0,5 ?0 и монотонно растёт. Для лёгких ядер Я. р. с протонами наблюдаются лишь начиная с ?р=неск. сотен кэВ, а для тяжёлых ядер — неск. МэВ. Вначале осн. Я. р.— радиац. захват (p, g), а также упругое (p, p) и неупругое (p,p') рассеяние. Для лёгких ядер s(?р) в области малых ?р носит резонансный характер, у средних и тяжёлых ядер s достигает заметной величины лишь в области энергий, где резонансной структуры нет. В области ?р=?0 наблюдается возбуждение небольшого числа аналоговых состояний. Я. р. (p, n) преобладает, если составное ядро имеет энергию возбуждения, достаточную для испускания нейтрона с энергией ?1 МэВ. При дальнейшем увеличении ?p конечное ядро может иметь энергию, достаточную для испускания второй ч-цы: наблюдаются Я. р. (p, 2n), (p, pn).
Для a-частиц кулоновский барьер ещё выше и достигает у тяжёлых ядер ?0=25МэВ. При такой энергии налетающей a-частицы энергия возбуждения ядра =20 МэВ, что достаточно для компенсации не только энергии связи вылетающего нуклона, но и для преодоления кулоновского барьера вылетающим протоном. Вследствие этого Я. р. (a, n) и (a, p) равновероятны. При увеличении ?a наиб. вероятной становятся Я. р. (a, 2n), (a, pn). Резонансная структура s(?a) наблюдается только у лёгких ядер и при относительно малых энергиях a-частиц. Продукты Я. р. (a, n) обычно b-активны, а для Я. р. (a, p) — стабильные ядра. Я. р. под действием дейтронов имеют наиболее высокий выход. Напр., в случае 9Ве (d, n) 10В при ?d=16 МэВ W=0,02 (для Я. р. с др. ядрами таких энергий W-10-3—10-6). Я. срыва реакция). Я. р. между легчайшими ядрами имеют заметный выход даже при малых энергиях налетающих ч-ц (W=1—10кэВ). Они могут осуществляться не только бомбардировкой ускоренными заряж. ч-цами, но и нагреванием смеси взаимодействующих ядер до темп-ры =107К (см. ТЕРМОЯДЕРНЫЕ РЕАКЦИИ).
Эфф. средством исследования ядра стали Я. р. под действием ч-ц высоких энергий, вплоть до сотен ГэВ, а также с участием мезонов, гиперонов и античастиц.
Протоны и более тяжёлые ионы, движущиеся слишком медленно для того, чтобы преодолеть кулоновский барьер, приближаясь к ядру, создают относительно медленно меняющееся электрич. поле, к-рое действует на протоны ядра. Ядро, поглощая эл.-магн. энергию, переходит в возбуждённое состояние, а налетающий ион теряет часть своей энергии. Кулоновское возбуждение ядер — одно из осн. средств изучения низколежащих коллективных состояний ядер.
Я. р. под действием g-квантов и электронов. При малых энергиях g-квантов они могут испытывать только упругое рассеяние. При энергиях, больших, чем энергия отделения нуклонов от ядра, осн. процессом становится поглощение g-кванта и испускание ядром нуклонов (см. ФОТОЯДЕРНЫЕ РЕАКЦИИ). Эл-ны, взаимодействуя с протонами ядра, также могут испытывать упругое и неупругое рассеяние и выбивать протоны из ядра. Исследование упругого рассеяния эл-нов позволило получить данные о распределении электрич. заряда и магн. момента в ядре.
Я. р. с тяжёлыми ионами. Для тяжелых ионов (Z>2) потенц. кулоновский барьер ?0 в Z раз больше, чем для протонов, и поэтому необходимо, чтобы энергия иона, приходящаяся на 1 нуклон ядра, превышала неск. МэВ (тем больше, чем больше Z мишени). Сечение s Я. р. с тяжёлыми ионами, обладающими энергией ?>1,4?0: s=pR2(1- ?0/?), где R»1,4(A11/3+A21/3), A1 и А2 — массовые числа взаимодействующих ядер. Это соответствует представлению о соударении двух заряженных чёрных шаров радиуса Л. При энергиях ?0 Я. р. осуществляются за счёт туннельного просачивания через барьер (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Налетающие ионы могут и не вызвать Я. р., а испытать упругое рассеяние в поле кулоновских и яд. сил. Угл. распределение ионов при упругом рассеянии (при l иона порядка расстояния макс. сближения с ядром) имеет дифракц. хар-р (чередование максимумов и минимумов). При меньших l дифракц. структура исчезает. Зависимость s(?) носит обычно нерезонансный хар-р. Исключение составляет упругое рассеяние. В энергетич. зависимости сечения упругого рассеяния 6Li на 6Li, 12С на 12С, 14N на 14N, и др. для ?=5—35 МэВ наблюдаются резонансы с шириной порядка неск. МэВ и более тонкая структура.
Я. р. с тяжёлыми ионами характеризуются большим числом выходных каналов. Напр., при бомбардировке 232Th ионами 40Ar с энергией 379 МэВ образуются ядра Са, Ar, S, Si, Mg и Ne. В случае Я. р. с тяжёлыми ионами наблюдаются Я. р. передачи нуклонов, передачи более сложных частиц и слияния. Я. р., при которых происходит передача малого числа ч-ц или малой части энергии, наз. мягкими соударениями. Их теория имеет много общего с теорией прямых реакций. Я. р., в к-рых происходит передача значит. массы или энергии, наз. жёсткими соударениями (глубоко неупругими процессами) .Угл. распределения продуктов этих Я. р. резко асимметричны: лёгкие продукты вылетают преим. под малыми углами к ионному пучку. Энергетич. распределение продуктов имеет широкий максимум. Кинетич. энергия продуктов Я. р. близка к высоте выходных кулоновских барьеров и практически не зависит от энергии ионов.
При глубоко неупругих столкновениях ядер образуется короткоживущая промежуточная система. Несмотря на обмен массой и энергией, ядра промежуточной системы сохраняют индивидуальность за счёт прочно связанных сердцевин. В результате жёстких соударений образуется много новых нуклидов. При ещё более тесном соударении образуется составное ядро. В таких Я. р. могут образовываться составные ядра с большими энергиями возбуждения (=100 МэВ) и угл. моментами (l=50). Я. р. с образованием составного ядра служат для синтеза трансурановых элементов (слияние ядер мишеней из Pb и Bi с ионами 40Ar, 50Ti, 54Cr, 55Mn, 58Fe). Напр., с помощью Я. р. 20482Pb(4018Ar, 2n)242100Fm был осуществлён синтез фермия.

Физический энциклопедический словарь. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1983.

ЯДЕРНЫЕ РЕАКЦИИ

-процессы, идущие при столкновении ядер или элементарных частиц с др. ядрами, в результате к-рых изменяются квантовое состояние и нуклон-ный состав исходного ядра, а также появляются новые частицы среди продуктов реакции. Я. р. позволяют исследовать механизм взаимодействия частиц и ядер с ядрами. Это осн. метод изучения структуры ядра (см.Ядро атомное),получения новых изотопов и элементов. Для осуществления Я. р. необходимо сближение частиц (нуклона и ядра, двух ядер и т. д.) до расстояния ~10-13см, или до ~ 1 ферми (радиус сильного взаимодействия), между частицей и поверхностью ядра или между поверхностями ядер. При больших расстояниях взаимодействие заряж. частиц чисто кулоновское. В Я. р. выполняются законы сохранения энергии, импульса, угл. момента, электрич. и барионного зарядов (см.Барионное число). Я.р. обозначаются символом а (b, с) d, где а - исходное ядро-мишень, b - налетающая частица, с - новая вылетающая частица, d-результирующее ядро.

Я. р. идут как с выделением, так и с поглощением энергии. Энергия, выделяемая или поглощаемая в реакции, равна разности масс (в энергетич. единицах) частиц до и после реакции. Величина поглощаемой энергии определяет мин. кинетич. энергию столкновения-т. н. п о р о г р е а к ц и и, при к-рой данная Я. р. может протекать. Величина порога Я. р. зависит от характеристик частиц, участвующих во взаимодействии (в первую очередь от зарядов и орбитальных моментов). На нач. этапе Я. р. сталкивающиеся частицы находятся в нек-ром квантовом состоянии, определяющем в х о д н о й к а н а л Я. р. В ы х о д н о й к а н а л задаётся составом и квантовым состоянием продуктов реакции.

Осн. источник бомбардирующих заряж. частиц-ускорители заряженных частиц,дающие пучки протонов, лёгких ядер (d,3He и т. п.) и тяжёлых ионов (вплоть до ядер U). Др. источник частиц, как заряженных, так и нейтральных,- Я. р. в мишени, вызываемые первичными пучками. Этим методом получают вторичные пучки g-квантов, нейтронов,пи-мезонов, К-мезонов, антипротонови др. Кроме того, медленные нейтроны и g-кванты получают, используяядерные реакторы.

Сечение Я. р.Для фиксир. налетающих частиц и ядер мишени возможно неск. типов Я. р. Вероятность протекания той или иной из них зависит от характеристик сталкивающихся частиц (в первую очередь от их кинетич. энергии) и связана с с е ч е н и е м р е а к ц и и - величиной эфф. площади, характеризующей ядро как мишень для налетающей частицы и являющейся мерой вероятности того, что частица и ядро вступят во взаимодействие. Если в Я. р. участвуют частицы с ненулевыми спинами, то сечение зависит от ориентации спинов. Поэтому если налетающие частицы или частицы мишени поляризованы (см.Ориентированные ядра),т. е. их спины ориентированы не хаотично, а частично упорядочены, то сечение будет зависеть от ориентации спинов. Количественно ориентация спинов частиц пучка описывается вектором поляризации (см.Поляризационные эффекты).В экспериментах не всегда можно непосредственно измерять сечение реакции. Непосредственно измеряемой величиной является т. н. в ы х о д р еа к ц и и- число зарегистрир. вторичных частиц - продуктов Я. р.

Механизмы Я. р.Характер взаимодействия налетающей частицы с ядром зависит от её кинетич. энергии, массы, заряда и др. характеристик. Он определяется теми степенями свободы ядра (ядер), к-рые возбуждаются в ходе столкновения. Различие между Я. р. включает и их разл. длительность. Если налетающая частица лишь касается ядра-мишени, а длительность столкновения приблизительно равна времени, необходимому для прохождения налетающей частицей расстояния, равного радиусу ядра-мишени (т. е. составляет ~ 10-22с), то такие Я. р. относят к классу прямых Я. р. Общим для всехпрямых ядерных реакцийявляется селективное возбуждение небольшого числа опре-дел. состояний (степеней свободы). В прямом процессе после 1 -го столкновения налетающая частица имеет достаточную энергию, чтобы преодолеть ядерные силы притяжения, в область действия к-рых она попала. Примерами прямого взаимодействия являютсянеупругое рассеяние нейтронов(n, n'), реакции обмена зарядом, напр. (р, п). Сюда же относят процессы, когда налетающий нуклон и один из нуклонов ядра связываются, образуя дейтрон, к-рый вылетает, унося почти всю имеющуюся энергию [т. н. р е а к ц и я п о д х в а т а (р, d)], или когда ядру передаётся нуклон из налетающей частицы [р е а к ц и я с р ы в а, напр. (d, р)]. Продукты прямых Я. р. летят преим. вперёд.

Вклад прямых процессов в полное сечение взаимодействия налетающей частицы с ядром-мишенью относительно мал. Угл. распределения продуктов прямых Я. р. (зависимость вероятности вылета от угла, отсчитанного от направления пучка) позволяют определить квантовые числа селективно заселяемых состояний в каждой конкретной Я. р., а величина сечения при заданной энергии - структуру этих состояний.

Если падающая частица (напр., нуклон) не покидает область взаимодействия (ядро-мишень) после первого столкновения, то она вовлекается в каскад последоват. столкновений, в результате к-рых её нач. кинетич. энергия постепенно распределяется среди нуклонов ядра и возбуждёнными оказываются мн. степени свободы, а состояние ядра постепенно усложняется. В ходе этого процесса на отд. нуклоне или группе нуклонов (кластере) может сконцентрироваться энергия, достаточная для их эмиссии из ядра. Такая эмиссия происходит до установления равновесия в ядре и поэтому наз. п р е д р а в н о в е с н о й. Угол испускания ещё может оставаться сильно скоррелирован-ным с направлением падающего на мишень пучка.

В процессе дальнейшей релаксации наступает статистич. равновесие и образуетсясоставное ядро(к о м п а у н д-я д р о), время жизни к-рого ~10-14-10-18с. Распад составного ядра не зависит от способа его образования. Тип распада определяется энергией возбуждения, угл. моментом,чётностьюиизотопическим спиномядра. Энергетич. спектр частиц, испускаемых в процессе девозбуждения со-ставного ядра, характеризуется максвелловской формой и симметричным распределением "вперёд-назад" относительно пучка (в системе центра инерции). В случае распада средних и тяжёлых составных ядер вероятность испускания нейтронов значительно превышает вероятность эмиссии заряж. частиц, вылету к-рых препятствует куло-новский барьер ядра. В тяжёлых ядрах с испусканием нейтронов конкурируют процессыделения ядериальфа-распада.

Реакции под действием нейтроновнаиб. вероятны в области низких энергий налетающих нейтронов. Отсутствие у нейтрона электрич. заряда позволяет ему беспрепятственно проникать в ядро при сколь угодно малых энергиях и вызывать Я. р. При этом сечения реакций изменяются от Мб до мб (1 барн= 10-28м2). В случае медленных нейтронов осн. процессом для большинства ядер являетсярадиационный захватнейтрона (n, g) с образованием составного ядра. Сечение процесса имеет резонансный характер. С увеличением энергии нейтрона вероятность его радиац. захвата падает, а сечение упругого рассеяния увеличивается (см.Нейтронная физика).В реакциях последоват. радиац. захвата нейтронов (напр., в реакторах) образуютсятрансурановые элементы.При последующем росте энергии нейтрона становятся возможными процессы неупругого рассеяния нейтронов с возбуждением низколежащих состояний ядра-мишени малой энергии, а также реакции деления ядер (n, f) и реакции с вылетом заряж. частиц (n, р) и (n, a). Дальнейшее увеличение энергии нейтрона приводит к реакции типа (n, 2n), (n, nр). Для медленных нейтронов важны их волновые свойства. Если энергия нейтрона 0,025 эВ, то длинаволны де Бройля~ 10-8см и соизмерима с межатомными расстояниями в твёрдом теле. В этих условиях может наблюдатьсядифракция нейтронов,к-рая используется для изучения строения твёрдых тел (см.Нейтронография).

Реакции под действием заряженных частиц (р, d, t, a,...).Осн. процессами здесь также являются упругое и неупругое рассеяния, радиац. захват, реакции (р, n), (n, a), (p, f) и др. Отличия от Я. р., вызванных нейтронами, связаны с зарядом частиц. Вероятность Я. р. (сечение) заметно отличается от О, начиная с энергии, при к-рой проницаемость кулоновского барьера достаточно велика. С увеличением заряда растёт высотакулоновского барьера ядра.В упругом рассеянии существ. вклад в сечение даёт кулоновское взаимодействие.

На характер реакций с участиемдейтронабольшое влияние оказывают его структурные особенности-малая энергия связи (~2,23 МэВ), относительно большой (по сравнению с близкими по массовому числуАядрами) радиус (4.10-13см). Дейтрон в Я. р. легко расщепляется, и с ядром-мишенью взаимодействует только один из его нуклонов. Доминирующий механизм реакции-прямой. Однако во мн. случаях дейтрон ведёт себя аналогично др. заряж. частицам и с большой вероятностью испытывает упругое и неупругое рассеяния, вызывает реакции (d, t), (d, a) и др. В основеуправляемого термоядерного синтезалежат реакции


Кроме упругого и неупругого рассеяний важный тип Я. р. представляют квазиупругие процессы (р, р'), (3Не, t) и др., когда вылетевшая частица по своим характеристикам (в т. ч. и энергии) мало отличается от падающей. Если налетающая и вылетающая частицы обмениваются зарядом, то в квазиупругих реакциях при энергиях ~ 100 МэВ на нуклон наблюдаются т. н. з а р я д о в о-о б м е н н ы е р е з о н а н с ы. Исследования этих процессов дают информацию о взаимодействии нуклонов в ядрах и свойствах ядерных мезонных полей (см.Мезоны).При теоретич. описании квазиупругих процессов часто используют понятия оптики. В этом случае рассеяние частицы на ядре, состоящем из мн. нуклонов, трактуют как прохождение падающей волны через среду, оптич. свойства к-рой определяются потенциалом, параметры к-рого подбираются из условия соответствия расчётных и эксперим. данных. Аналоги таких оптич. явлений, как дифракция, также обнаруживаются в рассеянии лёгких ядер (2Оптическая модель ядра).

Реакции под действием электронов и мюонов.Взаимодействие электронов и мюонов с ядрами носит электромагн. характер (см.Электромагнитное взаимодействие).Это позволяет использовать мюоны для выявления распределения заряда в ядрах, получения информации об утл. моментах, вероятностях разл. переходов, спиновых возбуждениях. Электроны могут испытывать упругое и неупругое рассеяния на ядрах. Если энергия электронов достаточна, то идут процессы выбивания протонов из ядра (е, р). Взаимодействие мюонов с ядрами происходит через захват мюона с орбиты мюонного атома. Захвату предшествуют торможение мюона в веществе и захват на далёкую мюонную орбиту. При этом образуетсямюонный атом.

Реакции под действием пионов (p-), каонов (К-) и антипротонов (р~).При взаимодействии этих частиц с кулонов-ским полем ядра атома происходят их захват и образование т. н. э к з о т и ч е с к и х а т о м о в (см.Адронные атомы),а затем поглощение ядром. Изучение рентг. спектров ад-ронных атомов позволяет получить сведения как о распределении плотности заряда в ядре, так и о свойствах самих отрицательно заряженных частиц, заменивших электрон в атоме,

Реакции под действием у-квантов.Осн. источник g-кван-тов -тормозное излучение,имеющее непрерывный спектр. При энергиях g-квантов ~10 МэВ энергетич. зависимость сечения их поглощения ядром характеризуется широким максимумом (см.Гигантские резонансы).При больших энергиях идут процессы выбивания нуклонов из ядра, напр. (g, n), фрагментация нуклонов в ядре и фоторождение пионов (g, p). В делящихся ядрах с большой вероятностью идёт реакция ф о т о д е л е н и я (g, f). В области энергий g-квантов, больших неск. десятков МэВ, фотоделение ядер становится возможным практически для всех элементов. Фотоделение ядер в области промежуточных энергий (~ 100 МэВ) практически всегда сопровождается вылетом достаточно большого числа нейтронов и лёгких ядерных фрагментов.

Реакции е тяжёлыми ионами.В случае тяжёлых ионов во взаимодействие вовлекаются большие массы, во входном канале реализуются очень большие угл. моменты, а длина волны де Бройля l мала по сравнению с характерными размерами области взаимодействия ядер. Напр., в реакции U + U при энергии налетающего иона ~7 МэВ на нуклон орбитальный угловой момент достигает 600h,а l4•10-13см. Малость l означает, что с хорошей точностью можно говорить о движении взаимодействующих ядер по траектории. Ядра при этом обмениваются нуклонами, энергией, изменяют форму, что, в свою очередь, влияет на их движение по траектории. Представление о движении по траектории удобно использовать для классификации Я. р. с тяжёлыми ионами.

В зависимости от величины прицельного параметраb(расстояния, на к-ром частица прошла бы мимо центра ядра-мишени, если бы взаимодействие отсутствовало) осуществляются Я. р. разного типа. При больших значениях прицельного параметра сталкивающиеся ядра А1,А2оказываются вне области действия ядерных сил - взаимодействие чисто кулоновское: либо упругое рассеяние, либокулоновское возбуждение ядра.При касательных столкновениях ядер А1, А2(b>=b')идут только прямые реакции (рис.а).При ещё меньших значенияхb(bкр<=b<=b')наблюдаются г л у б о к о н е у п р у г и е с т о л к н о в е н и я (рис.б).Для них характерны большая величина потерь кинетич. энергии, к-рая переходит во внутр. энергию возбуждения ядер, большие ширины массовых и зарядовых распределений. Кинетич. энергия ядер в выходном канале приближённо равна их энергии кулоновского отталкивания. Максимумы проинтегрированных по энергии и углу зарядовых распределений продуктов реакции располагаются около значений зарядов сталкивающихся ядер. Различным парциальным волнам, к-рые дают вклад в глубоко неупругие столкновения, отвечают разные времена взаимодействия и вследствие этого разные

углы отклонения налетающего ядра. Поэтому исследование корреляций характеристик реакций с угл. распределениями даёт информацию о развитии процесса во времени. При глубоко неупругих столкновениях формируется двойная ядерная система, к-рая живёт приблизительно 10-20с, а затем распадается на 2 фрагмента: A*1, А*2, не достигая состояния статистич. равновесия.


Рис. Классификация реакций с тяжёлыми ионами позначению прицельного параметраbи времени протекания реакции.

При значенияхb<=bкрядра сближаются настолько, что становятся возможными процессы слияния ядер (рис.в).Образовавшееся при слиянии составное ядро эволюционирует в направлении статистич. равновесия. Процесс, как правило, заканчивается или испарением лёгких частиц и образованием остаточного ядра, или делением на 2 осколка А/2. Реакции слияния перспективны в связи с возможностью синтеза в этом процессе сверхтяжёлых элементов (см.Трансурановые элементы).Доля столкновений, ведущих к образованию составного ядра, зависит от произведения зарядов сталкивающихся ядер Z1,Z2.Если Z1.Z2>2000, то эта доля становится малой.

При анализе Я. р. с тяжёлыми ядрами принято выделять реакции к в а з и д е л е н и я. Они заполняют переходную область между глубоконеупругими столкновениями и реакциями слияния. Для продуктов квазиделения характерны полная релаксация кинетич. энергии и типичные для деления угл. распределения. Однако в отличие от реакций слияния, к-рые проходят стадию составного ядра, форма системы не успевает стать равновесной до момента развала на 2 фрагмента.

Лит.:Вайскопф В., Статистическая теория ядерных реакций, пер. с англ., М., 1952; Лейн А., Томаc Р., Теория ядерных реакций при низких энергиях, пер. с англ., М., 1960; Ситенко А. Г., Теория ядерных реакций, М., 1983; Валантэн Л., Субатомная физика: ядра и частицы, пер. с франц., т. 2, М., 1-986; см. такжелит.при ст.Прямые ядерные реакции. Р. В. Джолос, С. П. Иванова.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1988.


  1. ядерные реакциипревращения атомных ядер при взаимодействии с элементарными частицами квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц двух ядер ядра и нук...Большая Советская энциклопедия II
  2. ядерные реакциипревращения атомных ядерi обусловленные их взаимодействием с элементарными частицамиi или друг с другом. Обычно в Я. р. участвуют частицы исходные а образуются в резу...Большой энциклопедический политехнический словарь
  3. ядерные реакцииЯДЕРНЫЕ РЕАКЦИИ реакции превращения атомных ядер при взамодействии с элементарными частицами квантами или друг с другом см. Фотоядерные реакции Ядерные цепные реакции. Вп...Большой энциклопедический словарь III
  4. ядерные реакцииЯДЕРНЫЕ РЕАКЦИИ реакции превращения атомных ядер при взамодействии с элементарными частицами квантами или друг с другом см. Фотоядерные реакции Ядерные цепные реакции. В...Большой Энциклопедический словарь V
  5. ядерные реакциипревращения атомных ядер при взаимодействии с элементарными частицами уквантами или друг с другом см. Фотоядерные реакции Ядерные цепные реакции.i Впервые Я. р. начал изу...Естествознание. Энциклопедический словарь
  6. ядерные реакциипревращения атомных ядер при взаимодействии с элементарными частицами gквантами или друг с другом. Ядерные реакции используются в экспериментальной ядерной физике исследо...Иллюстрированный энциклопедический словарь
  7. ядерные реакциипревращения атомных ядер обусловленные их взаимодействиями сильными и слабыми с элементарными частицами или друг с другом. Начала современного естествознания. Тезаурус. ...Начала современного естествознания
  8. ядерные реакциипревращения атомных ядер обусловленные их взаимодействием с элементарными частицами квантами или друг с другом. обычно в Я. р. участвуют частицы исходные а еще образую...Российская энциклопедия по охране труда
  9. ядерные реакцииЯДЕРНЫЕ РЕАКЦИИ превращения атомных ядер при взаимодействии с элементарными частицами gквантами или друг с другом. Ядерные реакции используются в экспериментальной ядерно...Современная энциклопедия
  10. ядерные реакцииЯДЕРНЫЕ РЕАКЦИИ реакции превращения атомных ядер при взамодействии с элементарными частицами квантами или друг с другом см. Фотоядерные реакции Ядерные цепные реакции. Вп...Современный энциклопедический словарь
  11. ядерные реакциипревращения атомных ядер при взаимодействии с др. ядрами элементарными частицами или квантами. Такое определение разграничивает собственно Я. р. и процессы самопроизвольн...Химическая энциклопедия
  12. ядерные реакцииЯДЕРНЫЕ РЕАКЦИИ реакции превращения атомных ядер при взамодействии с элементарными частицами квантами или друг с другом см. Фотоядерные реакции Ядерные цепные реакции. В...Энциклопедический словарь естествознания
  13. ядерные реакции[nuclear reactions] превращение атомов ядер при соударении с другими ядрами элементарными частицами или гаммаквантами. При бомбардировке тяжелых ядер более легкими получ...Энциклопедический словарь по металлургии