Физическая энциклопедия

УЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ


очень медленные нейтроны со скоростями ?5 м/с. Термин У. н. объясняется тем, что примерно с такой же скоростью двигались бы молекулы газа при темп-ре ниже 10-2 К. У. н. обладают малой кинетич. энергией (=10-7 эВ), недостаточной для преодоления слабого отталкивания ядрами, и полностью отражаются от поверхности мн. материалов (см. НЕЙТРОННАЯ ОПТИКА).
Полное отражение У. н. от стенок позволяет хранить их в течение неск. мин внутри замкнутых вакуумированных камер. Время хранения У. н. в замкнутых сосудах ограничено временем жизни свободного нейтрона (до его бета-распада), а также процессами радиационного захвата нейтронов ядрами и неупругого рассеяния нейтронов на ядрах в новерхностном слое толщиной =10-6 см. У. н. могут течь по трубам произвольной формы (нейтроноводам) как разреженный газ. Изогнутые нейтроноводы используются для вывода У. н. из ядерных реакторов и выделения их из потока тепловых нейтронов, в к-ром доля У. н. составляет лишь 10-11. Поэтому реально получаемые плотности У. н. <1 нейтрон/см3. На движение У. н. существенно влияют магн. и гравитац. поля. У. н. могут служить чувствит. инструментом для обнаружения у нейтрона возможного электрич. заряда или электрич. дипольного момента (см. НЕЙТРОН).

Физический энциклопедический словарь.— М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1983.

УЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ

- медленные нейтроны со скоростями с кинетич. энергией эВ (см.Нейтронная физика).Характерной особенностью У. н. является их способность к полному отражению от поверхности мн. материалов при любых углах падения (см.Нейтронная оптика).Полное отражение У. н. от стенок позволяет хранить их в течение неск. минут внутри замкнутых вакуумированных камер в виде своеобразного нейтронного газа. Термин "У. н." объясняется тем, что примерно такой же энергией обладают молекулы газа при темп-реT~10-3К.

Рис. 1. Эффективный потенциал (заимодействия ультрахолодных нейтронов со средой.

Эффективный потенциал.Все специфич. свойства У. н. могут быть объяснены с помощью т. н. эффективного (или оптич.) потенциалаUэфф. Этот потенциал можно трактовать как среднее по всему занимаемому средой объёму значение реального потенциала нейтрон-ядерного взаимодействия (рис. 1). В физике медленных нейтронов в качестве потенциала нейтрон-ядерного взаимодействия используется точечный к в а з и п о т е н ц и а л Ф е р м и:


гдет -масса нейтрона, -дельта-функция, r0-радиус-вектор ядра, а множительb,называемый к ог е р е н т н о й д л и н о й р а с с е я н и я на связанном ядре, определяется экспериментально из сечения рассеяния spмедленных нейтронов на данных ядрах согласно соотношению


Для среды с плотностью ядерNусреднение квазипотенциала Ферми по объёму даёт простое выражение для эфф. потенциала:


Основанием для введения такого усреднённого потенциала можно считать тот факт, что нейтроны с длинойволны де Бройляl, превышающей межатомные расстояния, взаимодействуют сразу с большим кол-вом ядер и не ощущают дискретности среды.

Для большинства ядерb>0 и соответственно положителен их эфф. потенциалUэфф. Чтобы проникнуть из вакуума внутрь среды, нейтроны должны преодолеть отталкивающее действие этого потенциала. Если энергия нейтронов

то они не могут пройти из

вакуума в среду и полностью отражаются при любых углах падениягри uгр- т. н. граничные энергия и скорость У. н. для данного материала). Эфф. потенциалUэффобусловлен чисто ядерными силами и связан ссильным взаимодействием,обычно характеризующимся энергиями в десятки МэВ. Однако из-за короткодействия ядерных сил и малого объёма, занимаемого ядрами в обычном веществе, величинаUэфф, играющая рольработы выходапри переходе нейтрона из вакуума внутрь среды, оказывается крайне малой (~10-7эВ). В табл. приведены значения эфф. потенциалов для ряда материалов. Небольшое кол-во веществ имеет отрицат. эфф. потенциал. При падении из вакуума У. н. частично отражаются от притягивающего потенциала этих веществ и частично проникают внутрь материала, где двигаются с большей скоростью:


(uи uср- скорости нейтрона в вакууме и среде).

Эфф. потенциал связан с показателем преломленияnнейтронной волны в веществе соотношением


Оба способа описания взаимодействия нейтронов со средой- через эфф. потенциал или с помощью показателя преломления нейтронной волны - эквивалентны. Так, полное отражение У. н. при аналогично отражению света от металлич. зеркала (показатель преломления мнимый). Практически, однако, поведение У. н. удобнее рассматривать, решаяШрёдингера уравнениес потенциаломUэфф(r), учитывая также часто существенные для столь медленных нейтронов потенциалы гравитационного (z -высота) и магнитного - магн. момент нейтрона,В-магн. индукция) полей. В частности, У. н. в гравитац. поле не могут преодолеть перепад высот >2 м.

Конечная величинаUэффприводит к тому, что отражение У. н. сопровождается их частичным проникновением в среду на глубину


Находясь внутри материала, У. н. могут либо быть захвачены ядрами, либо приобрести дополнит. энергию порядка за счёт процессовнеупругого рассеяния нейтроновна фононах. Возникающие при этих процессах потери нейтронов описываются добавлением к эфф. потенциалу малой мнимой части, к-рую принято выражать безразмерным параметром (см. табл.)


Эффективные потенциалы, граничные скорости и де-бройлевские длины волн [lА=h/(mvгр)] для некоторых материалов


В силуоптической теоремымнимая часть длины рассеяния


где sполн- полное сечение взаимодействия нейтронов с материалом. При малых скоростях нейтронов доминирующими процессами являются захват и неупругое рассеяние нейтронов, сечения к-рых следуют т. -4-10-5. Вероятность поглощения или нагрева У. н. при однократном отражении от поверхности материала hu/uгр, т. 5 столкновений со стенкой (границей).

Получение У. н.осуществляют путем выделения медленной компоненты максвелловского спектра тепловых нейтронов, выходящих из замедлителяядерного реактора.В таком спектре поток У. н. с энергиейсоставляет


ЗдесьF-полный поток нейтронов из замедлителя,T-установившаяся в замедлителе темп-pa нейтронного газа. ПриT= 300 К и = 1,7 · 10-7эВ (для меди) Ф= 0,6.10-11Ф, т. импульсном реакторе.

При полном потоке нейтронов Ф=1014нейтрон/см2·с, характерном для обычного исследовательского ядерного реактора, поток У. н. составит 600 нейтрон/см2·с, а их плотность в установленной рядом с замедлителем ловушке r= 16Фун/3u=0,54 нейтрон/см3. В медной ловушке объёмом ~ 1 л может быть накоплено ок. 500 нейтронов, после чего ловушку можно вынуть из реактора и зарегистрировать накопленные нейтроны в низкофоновом помещении. Такой способ получения У. н. носит демонстрац. характер и при своей реализации наталкивается на техн. трудности, связанные с созданием механич. затворов и высокой активацией ловушки вблизи активной зоны реактора.

Рис. 2. Получение ультрахолодных нейтронов (горизонтальные каналы): 1-активная зона реактора; 2-конвертор внутри нейтроновода 3; 4 - изогнутые участки нейтроновода; 5 - детектор нейтронов; 6-защита. Внизу показано расположение кон вертора в нейтроноводе.

Более простой способ извлечения У. нейтроноводу (рис. 2). В нач. части нейтроновода устанавливается дополнит. замедлитель-конвертор У. н., назначение к-рого состоит в регенерации У. и толщиной порядка длины свободного пробега У. н. в материале конвертора:


гдеN-плотность ядер в конверторе. Для водородосодер-жащих веществ Поэтому конвертор представляет собой пластину толщиной ~ 1 мм. Небольшие размеры конвертора позволяют охлаждать его до азотной (77 К) или даже гелиевой (4,2 К) темп-ры, тем самым увеличивая выход У. н. в десятки раз. Выбор материала для конвертора представляет особую задачу, поскольку этот материал должен удовлетворять ряду требований: иметь малый эфф. потенциал, низкое сечение захвата нейтронов, высокуюрадиационную стойкость материалов.Хорошими материалами для конверторов являются гидрид Zr, тяжёлый лёд, а также жидкие водород и дейтерий.

Изогнутая форма нейтроновода, изготовляемого из электрополированных медных или нержавеющих стальных труб диам. ~ 100 мм, позволяет отфильтровывать У. вакуум в нейтроноводе составляет 10-4мм рт. ст. Можно получить нейтроновод с пропусканием нейтронов 10-30% при полной длине ~10 м. Хорошо полированные нейтроноводы с высокой зеркальностью (0,99) необходимы для вертикальных или наклонных каналов У. н., в к-рых используется частичное замедление нейтронов гравитац. полем или замедление очень холодных нейтронов (со скоростями 50-100 м/с) спец. механич. системами (турбинами).

Время хранения У. в замкнутых сосудах ограничено временем жизни свободного нейтрона до b-распада с; см.Бета-распад нейтрона),а также процессамирадиационного захватаи неупругого рассеяния нейтронов при отражении от стенок сосуда. Практически в сосуде объёмом 50 л можно накопить 105нейтронов и получить время хранения ~500-800 с.


Рис. 3. Схема эксперимента по поиску электрическогодипольного момента нейтрона: 1-клапаны впуска ивыпуска нейтронов; 2 - поляризатор; 3 - контур спинового ротатора; 4-камера хранения; 5-детектор.

У. нейтрона. На рис. 3 приведена схема установки для поиска электрич. дипольного момента нейтрона. У. н. последовательно проходят через поляризатор (см.Поляризованные нейтроны),радиочастотный спиновый ротатор, поворачивающий спины нейтронов на 90o, и попадают в камеру хранения, где прецессируют с ларморовской частотой в приложенном магн. полеН(m-магн. момент нейтрона). Параллельно магн. полю накладывается и электрич. полеE.При наличии у нейтрона электрич. дипольного моментаdeчастота прецессии должна измениться на величину в зависимости от знака приложенного электрич. поля. За времяTхранения нейтронов в камере дополнит. фазовый сдвиг угла прецессии составит Выходя из камеры, нейтроны снова проходят через спиновый ротатор и поляризатор, после чего регистрируются детектором. Кол-во зарегистрированных нейтронов зависит от величины фазового сдвига dj и будет максимальным при совпадении частоты спинового ротатора с частотой прецессии нейтронов в камере. Точность определения частоты прецессии обратно пропорциональна времени пребывания нейтронов в камере, к-рое для У. (е -заряд электрона). Др. областями применения У. Нейтронная оптика).

Лит.:Шапиро Ф. Л., Собрание трудов, [кн. 2]. Нейтронные исследования, M., 1976; Игнатович В. К., Физика ультрахолодных нейтронов, M., 1986.В. И. Лущиков.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1988.


  1. ультрахолодные нейтроныУЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ очень медленные нейтроны iсо скоростями lt i мсек. iТермин У. н. объясняется тем что примерно с такой же скоростью двигались бы молекулы газа при ...Большая советская энциклопедия
  2. ультрахолодные нейтроныочень Медленные нейтроныem со скоростями мсек.em Термин У. н. объясняется тем что примерно с такой же скоростью двигались бы молекулы газа при температуре ниже sup К. У...Большая Советская энциклопедия II
  3. ультрахолодные нейтронынейтроны с энергией меньше эВ....Большой энциклопедический словарь II
  4. ультрахолодные нейтроныУЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ нейтроны с энергией меньше эВ....Большой энциклопедический словарь III
  5. ультрахолодные нейтроныУЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ нейтроны с энергией меньше эВ....Большой Энциклопедический словарь V
  6. ультрахолодные нейтронынейтроны с энергией меньше supэВ....Естествознание. Энциклопедический словарь
  7. ультрахолодные нейтроныУЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ нейтроны с энергией меньше эВ....Современный энциклопедический словарь
  8. ультрахолодные нейтроныУЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ нейтроны с энергией меньше эВ....Энциклопедический словарь естествознания