Физическая энциклопедия

МАГНЕТОСОПРОТИВЛEНИЕ

- изменение удельного сопротивления r проводника (металла, полуметалла, полупроводника) во внешнем магн. полеН.Количественно М. характеризуется скалярной величиной М.- чётное гальваномагнитное явление. Классич. М. обусловлено искривлением траекторий носителей заряда (для определённости электронов проводимости) под действием магн. поля. Мерой искривления может служить отношение характерного размера траектории в магн. поле (напр., радиуса кривизныr)к длине свободного пробега электронаl.Это отношение можно представить в виде отношенияН/Н0,гдеH0=cp/el (p -импульс электрона,е -его заряд). Прикак продольное (ток ), так и поперечное магнетосопротивление порядка (H/H0)2, т. е. магнетосопротивление мало. При искривление траекторий существенно, и магнетосопротивление велико. При расстояние междуЛандау уровнямиэлектрона в магн. поле становится больше, чем тепловое размытие (kT)уровней и квантование движения электронов существенно влияет на магнетосопротивление (подробнее см.в ст.Гальвано магнитные явления).

Аномальное магнетосопротивление.В ряде веществ наблюдается значительное магнетосопротивление при , знак которого может быть как положительный, так и отрицательный. Такими веществами являются, напр., ферро- и антиферромагн. металлы. Причины этого, как правило, внешние по отношению к электронам: при исчезает доменная структура, уменьшается плотностьмагнонови др.

В немагнитных проводниках аномальное М., как правило, обусловлено квантовыми эффектами в движении электронов, вклад к-рых определяется соотношением между длиной волны де Бройля электрона и длиной его свободного пробегаl. При (высокая концентрация примесей, высокая темп-ра) электронные состояния становятся локализованными (см.Андерсoновская локализация),т. е. квантовые эффекты приводят к исчезновению проводимости. В хороших проводниках и проводимость определяетсяДруде формулой:


гдеN- концентрация электронов. Квантовые эффекты в этом случае приводят к малым поправкам в ф-ле Друде, к-рые, однако, существенно зависят от магн. поляН.Поправки обусловлены интерференцией электронных состояний с состояниями, "обращёнными во времени", и важны для электронных траекторий с самопересечениями (рис. 1, см.Интерференция состояний).Фазы, "набираемые" электронными волновыми ф-циями (в отсутствие поляН)при прохождении электроном замкнутого участка траектории по и против часовой стрелки, равны ( ). Поэтому интерференц. слагаемые в выражении для вероятности возврата в точку 0 велики, т. е. дают такой же вклад, как и классические. В итоге интерференция приводит к затруднению диффузии электрона из точкиАв точкуВи является причиной локализации и, следовательно, убывания , т. е. роста . Можно показать, что интерференц. вклад в а зависит от размерности пространстваd:


Здесь , гдеD -коэф. диффузии электронов, - время "сбоя" фазы волновой ф-ции электрона (время фазовой релаксации), в течение к-рого электронное состояние можно считать когерентным. Величина определяется неупругими процессами и в общем случае не совпадает со временем релаксации энергии (короче него). Величина имеет смысл макс. размера траекторий, на к-рых возможна интерференция состояний. Двумерная ситуация соответствует неравенству , гдеа -толщина образца. Т. к. , то переход от трёхмерной к двумерной ситуации и соответствующий размерный эффект квантового вклада в сопротивление возникают при . Наиб. ярко локализац. эффекты проявляются приd=2(плёнки,инверсионные слои),где интерференц. вклад в а растёт с ростом

Отрицательное магнетосопротивление.При наличии магн. поля фазы, набираемые электронными волновыми ф-циями при распространении по и против часовой стрелки, становятся различными Поэтому отрицательный интерференц. вклад в проводимость уменьшается по величине, т. е. вырастает, а сопротивление убывает - возникает о т-рицательное магнетосопротивление. В магн. поле разность фаз интерферирующих волновых ф-ций становится равной 2Ф/Ф0, где Ф - магн. поток, пронизывающий траекторию электрона, а -квант магнитного потока.Поле , при к-ром подавление интерференц. вклада становится существенным , имеет порядок:


(v- скорость электрона, - характерная площадь траектории). Из (3) видно, что . Изменения проводимости s в области приближённо равны:


В трёхмерном случае эффект не зависит от угла междуHиj;в двумерном отрицат. магнетосопротивление анизотропно. Наиболее яркие проявления интерференц. эффектов - осцилляции сопротивления многосвязных образцов в магнитном поле - аналогАаронова - Бома эффекта(рис. 2).

Рис. 2. Зависимость сопротивленияRполого цилиндра из Li от магнитного поляS,параллельного оси цилиндра; сплошная кривая - данные эксперимента, штриховая - теоретическая.

Влияние спиновых эффектов.При рассеянии электрона на немагн. примесях, дефектах или поверхности образца из-за спин-орбитального взаимодействия подавляется когерентность между 2 сопряжёнными волновыми ф-циями в триплетном канале (полный спин 1), в то время как когерентность в синглетном канале (полный спин 0) сохраняется. Рассеяние на магн. примесях, приводящее к перевороту спина, подавляет когерентность в обоих каналах. Интерференц. слагаемое, соответствующее синглетному каналу, входит со знаком, противоположным бесспиновому случаю. Подавление этого вклада магн. полем соответствует аномальному положит. М. Поле , характеризующее его, можно получить из оценки (3) заменой , где . Здесь - частота актов магн. рассеяния.

Влияние энергетического спектра носителей.К аномальному положит. М. могут привести и особенности энергетич. спектра носителей заряда. В нек-рыхполупроводникахвалентная зона 4-кратно вырождена в центре зоны Бриллюэна. В результате возникает 4 интерференц. вклада, каждый из к-рых характеризуется своим временем фазовой релаксации. При сильной деформации, снимающей вырождение валентной зоны, положит. аномальное М. меняется на отрицательное.

Межэлектронное рассеяниеусложняет описанную картину. С одной стороны, межэлектронное рассеяние даёт вклад во время фазовой релаксации (в ряде случаев определяющий). С др. стороны, оно является источником специфич. квантовых вкладов, чувствительных к магн. полю: взаимодействие флуктуации плотности электронов и образование электронных пар (аналогичное сверхпроводящему спариванию). Магн. поле влияет на эти процессы по-разному. В частности, возникает М. в полях . Появление такого масштаба обусловлено тем, что энергии двух интерферирующих электронных состояний различаются на величину порядка ;. соответственно, скорость рас-фазировки порядка . При учёте спиновых эффектов появляются также вклады, характеризующиеся зависимостью отНпри ( - магнетон Бора,g -фактор спектроскопич. расщепления).

Т. о., аномальное М. характеризуется разнообразными зависимостями от магн. поля. Исследование этих зависимостей в сочетании с изучением классич. магнетосопротивления и температурных зависимостей магнетосопротивления позволяет определить такие характеристики электронов в проводниках, как энерге-тич. спектр, механизмы релаксации, константы межэлектронного взаимодействия, времена фазовой и спиновой релаксации и др.

Лит.:Альтшулер Б. Л. и др.. Об аномальном магнетосопротивлении в полупроводниках, "ЖЭТФ", 1981, т. 81, с. 768; А1tshu1еr В. L. и др., Coherent effects in disordered conductors, в кн.: Quantum theory of solids, Moscow, 1982; Bergmann G., Weak localisation in thin films, a time - of-flight experiment with conduction electrons, "Phys. Repts", 1984, v. 107, p. 1; Altshuler B. L., Aronov A. G., Electron-electron interaction in disordered-systems, в кн.: Electron-electron interactions in disordered conductors, Amst., 1985; Lee P. A., Ramakrishnan T. V., Disordered electronic systems, "Rev. Mod. Phys.", 1985, v. 57, p. 287.

Ю. M. Галъперин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1988.