Физическая энциклопедия

КАНАЛИРОВАНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ

-движение заряж. частиц внутри монокристалла вдоль "каналов", образованных параллельными рядами атомов или плоскостей. К. з. ч. было предсказано М. Т. Робинсоном (М. Т. Robinson) и О. С. Оэном (О. S. Оеп) в 1961 и обнаружено в 1963. Различают аксиальное и плоскостное К. з. ч. Аксиальное К. з. ч. наблюдается, когда пучок быстрых заряж. частиц падает на монокристалл под малым углом к одной из кристаллографич. осей. При этом положительно заряж. быстрая частица (напр., протон), приближаясь к одной из цепочек атомов, параллельных кристаллографич. оси, в результате серии последоват. актов слабого рассеяния на упорядочение расположенных атомах как бы плавно искривляет свою траекторию так, что наблюдается почти зеркальное отражение частицы от цепочки (V2@V1; рис. 1, кривая а). Из теории следует, что такого рода "зеркальность" наблюдается приV1Л, где VЛ- т. н. угол Линдхарда, к-рый определяется соотношением:

Здесь Z1e,Z2e-заряды движущейся частицы и ядра атома монокристалла, E- энергия частицы,l -расстояние между соседними атомами в цепочке. При таком движении частица в течение всего времени удерживается вдали от ядер, находящихся на оси цепочки. При увеличении V1до значений V1>VЛхарактер движения изменяется.

Рис. 1. Траектории заряженных частиц в кристалле при угле падения на грань кристалла VЛ (кривая а) и при V>VЛ(кривая б).

Частица может испытывать близкие столкновения с ядрами, в результате к-рых она рассеивается на большой угол (кривая б) и далее движется так же, как в неупорядоч. среде. Угол VЛсоставляет величину порядка долей градуса. В толще кристалла частица, движущаяся в режиме аксиального К. з. ч., испытывает последовательные акты "зеркального" отражения от разных цепочек. В поперечной плоскости движение такой частицы в общем случае представляет случайное блуждание (рис. 2). Плоскостное К. з. ч. наблюдается при падении пучка под малым углом к кристаллографич. плоскости. В этом случае частицы попеременно отражаются от соседних плоскостей; их траектория напоминает синусоиду (рис. 3). При этом частица также удерживается вдали от ядер.

Наиб. ярко К. з. ч. может проявляться в угловых распределениях продуктов ядерных реакций на монокристаллической мишени (рис. 4). Резкое уменьшение интенсивности вылетающих частиц при V1=0 свидетельствует о том, что осн. часть падающего пучка попадает в режим К. з. ч., и вероятность столкновений с ядрами, а следовательно протекания ядерных реакций существенно снижается.

Рис. 4. Зависимость числа зарегистрированных частицN-продуктов реакции от угла V1между кристаллографической осью и направлением падающего пучка.


Рис. 5. Поперечный периодический потенциал V(l) для плоскостных каналов в случае позитронов (a) и электронов (б).

Удержание каналированных частиц вдали от оси цепочки приводит и к др. физ. явлениям. Так, приV1Л уменьшается выход характеристич. рентг. лучей от внутр. электронных оболочек. Каналированные частицы имеют существенно большие пробеги по сравнению с частицами, движущимися в отсутствие К. з. ч. Это связано, с одной стороны, с тем, что отсутствие близких столкновений с ядрами уменьшает ядерные потери энергии, а с другой - траектория каналированных частиц лежит в области пониж. электронной плотности; при этом ионизац. потери уменьшаются. волны де Бройля движущегося иона характер его движения можно описать классически в виде последовательности столкновений с упорядоченно расположенными атомами кристалла. V для плоскостных каналов в случае позитронов (рис. 5,а)и электронов (рис. 5,б).Горизонтальными линиями изображены энергетич. уровни поперечной составляющей движения частиц в кристалле. Стрелками указаны нек-рые из возможных квантовых переходов (соотвeтствующее этим переходам эл.-магн. излучение наблюдается). Каналированные позитроны движутся в "пустотах", а электроны - в областях, "занятых" ядрами кристалла. Это различие имеет следствия: позитроны движутся в режиме К. з. ч. относительно продолжит, время, электроны же имеют повыш. вероятность рассеяться на ядрах на большой угол, так что их "длина каналирования" существенно меньше. Процесс выбывания частиц из режима каналирования наз. деканалированием. Скорость деканалирования определяется зарядом и энергией движущейся частицы и характеристиками кристалла (заряд ядер, темп-pa,дефектыи др.).К. з. ч. имеет ряд приложений. Одно из них - т. н. метод обратного рассеяния на монокристаллах. Пучок падающих частиц направляется вдоль кристаллографич. осей или плоскостей, измеряется энергетич. спектр продуктов рассеяния или ядерных реакций. Любые отклонения от идеальной решётки (температурные колебания атомов, дефекты) приводят к характерному искажению энергетич. спектра (рис. 6).

Рис. 6. Энергетический спектр рассеянных частиц при рассеянии на бездефектном кристалле (I); в кристалле, у которого на некоторой глубине располагается слой со значительным количеством дефектов (II); E1и E2- энергии частиц, рассеянных на передней и задней стенках этого слоя; высота пика на кривой II определяет концентрацию дефектов; III-отсутствие каналирования.

Методом обратного рассеяния удаётся экспериментально определять положение примесных атомов в ячейке кристалла, исследовать структуру поверхностного слоя монокристалла и др. ионной имплантации, т. к. при определ. условиях оно может привести к расширению имплантированного слоя и усложнению его структуры. Теней эффект).Лит.:Тулинов А. Ф., Влияние кристаллической решетки на некоторые атомные и ядерные процессы, "УФН" 1965, т. 87, с. 585; Линдхард И., Влияние кристаллической решетки на движение быстрых заряженных частиц, там же, 1960, т. 99, с. 249; Кумахов М. А., Ширмер Г., Атомные столкновения в кристаллах, М., 1980.А. Ф. Тулинов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1988.


  1. каналирование заряженных частицдвижение протонов электронов и др. заряженных частиц попавших в монокристалл вдоль каналов образованных параллельными рядами атомов или кристаллографич. плоскостями. Пред...Естествознание. Энциклопедический словарь
  2. каналирование заряженных частицв кристаллахem channeling of charged particles...Русско-английский словарь по физике