Физическая энциклопедия

ИЗЛУЧЕНИЕ ПЛАЗМЫ


(см. ПЛАЗМА).

Физический энциклопедический словарь. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1983.

ИЗЛУЧЕНИЕ ПЛАЗМЫ

- поток энергии эл.-магн. воли (в диапазоне от радио- до рентгеновских), испускаемых частицами плазмы при их индивидуальном или коллективном движении. Интенсивность и спектральный состав излучения отражают состояние плазмы, благодаря чему И. п. служит одним из средств её диагностики. И. п. является также одним из гл. каналов её энергетич. потерь (радиац. потери, РП), поэтому оно играет важную роль в энергобалансе плазм, систем. Существенна также роль И. п. в установлении термодинамического состояния плазмы - распределения ионов по кратностям ионизации, возбуждённым уровням и т. п. плазма).
Основные механизмы И.п.определяются как индивидуальными свойствами заряж. и нейтральных частиц, образующих плазм, систему, так и её коллективными свойствами - колебательно-волновыми характеристиками (см.Волны в плазме).И. п., основанное на индивидуальных свойствах частиц, подразделяется на след, типы: линейчатое излучение (ЛИ), возникающее при переходе электрона в атоме или ионе между двумя дискретными уровнями (связанно-связанный переход); фоторекомбинац. излучение (ФИ), возникающее при захвате свободного электрона на один из дискретных уровней атома или иона (свободно-связанный переход); тормозное излучение (ТИ) свободного электрона в поле иона (свободно-свободный переход); м агнитотормозное, или циклотронное, излучение (ЦИ) электрона при его вращении в магн. поле напряжённостьюH. Эти типы И. п. имеют одинаковую микроскопич. основу - ускорениеwэлектронов во внеш. поле, электрич. или магнитном. Характерные частоты И. п. определяются угл. скоростями поворота частиц при движении по криволинейным траекториям. Полная интенсивность излучения определяется величиной I=2/3e2w2/c3(е -заряд электрона), а распределение Iwинтенсивности по спектру частот - фурье-компонентой Iw=2/3e2w2w/c3. Различия в типе поля, вызывающего ускорение электронов, приводят к резким различиям как полных интенсивностей I, так и иптенсивностей характерных излучаемых частот Iw. Напр., для ЛИ

(E1, E2- энергии уровней); для ЦИ

(n = 1, 2, 3. . .,т, v-масса электрона и его скорость в плоскости, перпендикулярной кН);для ТИ при классич. движении wT~mv3/Ze2(Ze -заряд иона). Если вращение электрона периодично (например, в случае ЛИ и ЦИ), то спектр излучения дискретен, в противном случае он непрерывен (спектры ТИ и ФИ). Для структуры непрерывного спектра ФИ характерно наличие скачков, отвечающих рекомбинации на отд. дискретные уровни иона. Дискретность спектра может нарушаться, напр., вследствие доплеровского уширсния, обусловленного разбросом скоростей излучающих частиц. В спектре ЛИ ввиду относительно малой скорости атомов или ионов доплеровские сдвиги невелики и дискретность спектра сохраняется. В спектре ЦИ эти сдвиги wцобусловлены движением гораздо более быстрых электронов и приводят, уже начиная сTe~10кэВ, к слиянию высоких (nд1) гармоник ЦИ в непрерывный спектр - континуум. v, близкой к фазовой скорости эл.-магн. волн (напр.,геликоны).Условие такого резонанса частица -волна (т. н. резонанса Ландау) записывается в виде w=kv(w - частота эл.-магн. волны,k -её волновой вектор), а в магн. поле: w-lwH=kv (l=0,1, 2..., w0н=еН/тс -циклотронная частота), б) Переходное излучение также определяется взаимодействием частица - волна и возникает при переходе заряж. частиц через границы, на к-рых резко меняются дисперсионные свойства эл.-магн. волн (напр., граница плазма - вакуум), в) Излучение, определяемое трансформацией продольных волн в поперечные на границе плазмы или её неоднородностях (линейное взаимодействие волна - волна); В этом случае частота излучаемой волны совпадает с частотой исходной продольной волны (в простейшем случае [email protected]рe= (4pпе2/m)1/2,wре-плазменная частота), г) Излучение, возникающее при нелинейном взаимодействии продольных волн с поперечными. Условие такого взаимодействия есть

(см.Взаимодействие волнв плазме).Для волн относительно небольшой амплитуды основным является процесс взаимодействия трёх волн. Для изотропной плазмы этот процесс приводит к излучению на частотах [email protected]рeи w=2wpe. Излучение на частотах [email protected]ревозникает вследствие "слияния" ленгмюровской волны с низкочастотными флуктуациями или колебаниями плазмы (напр., с ионным звуком), а на удвоенной частоте w=2wрe- вследствие слияния двух ленгмюровских волн. В плазме, близкой к термодинамич. равновесию, указанные процессы часто наз. трансформацией на флуктуациях продольных волн в поперечные. Тормозное излучение электронов, но не в электрич. поле отд. иона, а в электрич. полях флуктуации плотности частиц плазмы (взаимодействие частица - волна - излучение). Интенсивность И. п. в указанных условиях может возрасти на неск. порядков по сравнению с обычным ТИ. С этим связывают, в частности, усиление излучения при вспышках на Солнце. индуцированное излучение того или иного происхождения. Интенсивность И. п. коллективного происхождения определяется конкретным механизмом неустойчивости. Zi(см.Ионизационное равновесие),а для данногоZi-по возбуждённым уровням. Эти распределения вместе с максвелловским распределением электронов по скоростям (к-рое обычно легко поддерживается их частыми взаимными столкновениями и потому не искажается излучением) образуют полный "набор" излучателей для ЛИ, ТИ, ФИ и ЦИ. В свою очередь, частицы плазмы влияют на форму излучаемых спектров, приводя куширению спектральных линий,и на распространение излучения в среде (см. ниже Запирание излучения, а такжеПеренос излучения).Наиб. полным взаимовлияние плазмы и излучения оказывается для ЛИ: дискретность спектра предопределяет его чувствительность к многообразным уширяющим воздействиям электронов и ионов, а концентрация излучающих электронов на возбуждённых уровнях в сильной степени определяется скоростью радиац. процессов девозбуждения и возбуждения. Nпдискретных уровнейпхарактеризуется параметром b=Nesтуш>t, где sтуш- сечение электронного девозбуждения (тушения), а t - время жизни возбуждённогоуровня относительно высвечивания. При bд1 (плотная и холодная плазма) в девозбуждении преобладают столкновительные процессы, приводящие к установлениюлокального термодинамического равновесия(ЛТР) плазмы, в к-ром населённости уровнейNnблизки к больцмановским NБ. При bЪ1 (разреженная и горячая плазма) в девозбуждении доминируют излучат, процессы, так что почти каждый акт столкновительного возбуждения сопровождается высвечиванием - т. н. корональный режим (типичный для плазмы солнечной короны, а также для термоядерной плазмы).Причинами уширения линий в плазме являются эффекты Доплера, Штарка и Зеемана. Тепловой разброс скоростей излучающих частиц приводит вследствие эффекта Доплера к разбросу излучаемых частот на величину DwД~vw0/с. Еiионов также приводят к т. н. статич. уширению, при к-ром форма контура спектральной линии определяется ф-цией распределения ионных микрополейW(Ei),а ширина линии - только плотностью ионовNi.Быстроперем. поля электронов приводят к ударному уширению, при к-ром контур линии имеет дисперсионную (лоренцовскую) форму Гуд/(Dw22уд) с шириной Гуд, равной частоте уширяющих столкновений. Неоднородность магн. поля приводит также к уширению линий ЦИ, к-рое, напр., в плазметокамакаможет превзойти доплеровское.
Излучательная способность и объёмные РП плазмы.Осн. характеристикой И. п. является излучат. способность h(w)dw - энергия, излучаемая единицей объёма оптически тонкой (прозрачной) плазмы за единицу времени в единицу телесного угла в интервале частот от w до w+dw. Зависимость h от w и темп-ры специфична для каждого механизма И. п., зависимость же от концентрацийNсоответствующих частиц в ряде случаев проста и универсальна. Так, для ЦИNе(излучение как бы беспрерывно струится от каждого электрона), для ТИ и ФИ hт,ф(излучение возникает в результате парных столкновений электронов с ионами). Для ЛИ зависимость hлотNсложнее, т. к. вследствие штарковского уширенияNeиNiвходят в качестве параметров в выражение для профиля линии. Однако для интегральной величины

могут реализоваться обе отмеченные зависимости отN:в пределе ЛТР (bд1) имеет место

в корональном пределе (bЪ1) имеем

гдеN0- концентрация атомов (ионов) на ниж. уровне. При произвольном b имеем

Зависимость излучат. способности от остальных (кроме концентраций) параметров плазмы для ТИ имеет вид

гдеZ -атомный номер (заряд ядра),g -"фактор Гаунта", численный множитель (часто ~ 1), учитывающий квантовые эффекты в ТИ, частичную экранировку ядра электронным остовом и др.; для ЦИ при достаточно большихТeип,когда спектр уже непрерывен,h(w)(H/Te/1/4w3/4exp[-(m2c3w/eHTe)1/2];для ЛИ hл(w)Р(w), где типы профилей Р(w) определяются разл. механизмами уширения линий.
Для ТИ, ФИ, атакже для ЛИ в корональном режиме (наиб. типичном именно для прозрачных систем) РП описываются единой ф-лой видаQ=NeNieshw>,где s - сечениесоответствующего неупругого процесса (ТИ, фоторекомбинации, возбуждения), а угл. скобки означают усреднение (и, если необходимо, суммирование по кратностям ионизации и переходам). РП для этих трёх механизмов И. п. удобно выражать в виде удельныхPПq=Q/NeNZ[Вт. 3], гдеNZ-концентрация данной многозарядной примеси. На рис. 1 приведены расчёты РП водородной плазмы с примесью железа в зависимости отТе;указан вклад ЛИ, ТИ, ФИ, а также излучения в результатедиэлектронной рекомбинации.Видно, что приТех1кэВ осн. вклад в РП вносит ЛИ многозарядных ионов, возбуждаемых электронным ударом; с ростом Тe(т. е. по мере удаления связанных электронов - "обдирки" ионов) всё большую роль начинают играть ФИ и ТИ. Резкий спад РП при переходе от Te@1 кэВ к Te@2 кэВ обусловлен переходом к замкнутой гелиеподобной оболочке ионов Fe XXV, скорость возбуждения к-рых (а следовательно, и ЛИ) резко уменьшается. При глубокой обдирке иона qT@l,5.10-32Z2Ц[Te(эB)],

qф@5.10-31Z4/Ц[Te(эB)], qл@8.10-30Z6T-3/2(эB), так,

что, напр., ТИ начинает превосходить ФИ приТеа30Z2(эВ). Для грубой оценки полных РП можно пользоваться ф-лой qполн@qT(Z, T)+qф(Z,Т),в к-рой допущение о полной "обдирке" иона (и соответствующее завышениеqTиqф)качественно компенсируется полным неучётом потерь на ЛИ.

Рис. 1. Зависимость удельныхРП q=Q/NeNiводороднойплазмы с примесью железа оттемпературыТе

Запирание излучения в плазме и РП в общем случае.Чтобы судить о реальной интенсивности И. п., необходимо учесть возможное поглощение излучения внутри самой плазмы, приводящее к явлению т. н. "запирания" И. п., когда излучение выходит не из всего объёма плазмы, а только из её внеш. слоев. Каждому механизму И. п. соответствует обратный ему механизм поглощения, характеризуемый коэф. поглощения ((w) на единицу длины. В условиях ЛТР, т. е. когда распределение частиц, ответственных за данный механизм испускания-поглощения, термически равновесно (для ТИ и ЦИ это означает максвелловское распределение электронов, для ФИ - то же плюс распределение кратностей ионизации, согласноСаха формуле,для ЛИ - больцмановское распределение населённости возбуждённых уровней, т. Пл(w), где BПл(w) - интенсивность равновесного (чёрного) излучения на единицу телесного угла. Соответственно спектральная интенсивность Iw(а) излучения термически однородного слоя плазмы толщинойаравна Iw(а)=ВПл(w){1 - ехр[- h(w)а/ВПл(w)]}, а интегральная интенсивность I(а) равна

На участкахспектра, где ((w)ад1 (оптически толстый слой), имеем Iw(а)@ВПл(w), т. е. плазма излучает как чёрное тело, с поверхности, а излучение из объёма заперто; на участках ((w)аЪ1 (оптически тонкий слой) Iw(а)@h(w)а (незапертое, объёмное излучение).В случае ЛИ (рис. 2) вклад "запертой" линии ("упирающейся" в планковскую кривую ВПл) с центром w=w0в полное излучение I(а) равен ВПл(w0)Dwэкв(а),где Dwэкв- т. н. эквивалентная ширина линии, равная ширине участка с ((w)а/1. Для доплеровского профиля DwэквДЦln[((w0)а], для лоренцовского - DwэквудЦ((w0)а, (ГД, Гуд- доплеровская и ударная ширины, ((w0)ад1 - оптическая толщина слоя в центре линии). Запирание ЛИ существенно в основном для низкотемпературной и достаточно плотной плазмы. 37T7/2.(Z2NiNe)-1(T в эВ,NiиNeв см-3, а* в см). Интенсивность ТИ, выходящего из изотермич. слоя плазмытолщиной а,

если аЪа* (объёмное излучение); если же ада*, то I(а)@sT4(чёрное излучение; s -Стефана - Больцмана постоянная).Последний случай типичен для астрофиз. объектов, напр., звёзд. Здесь роль "запертого" И. п. сводится к переносу энергии от горячего центра звезды к её более холодной поверхности (см.Лучистое равновесие).

Рис. 2. Запертые (w1, w3, w4) и незапертые (w2и w5) спектральные линии; (w0- невозмущённые частоты соответствующих линий.


Рис. 3. Переход между пределами объёмного и поверхностного тормозного излучения. Кривая 1-чёрное излучение ;2 - объёмное тормозное излучение T1/2)

Зависимость РП на тормозное излучение от темп-ры при фиксированнома(а также Z,NiиNe)представлена на рис. 3. ЗначениеТ=Т*,разграничивающее области объёмных и поверхностных РП, равно T*@2.10-11(Z2NiNea)2/7.Для большинства направлений УТС Zэф@1,a2/7~1 (от токамака до лазерного УТС а2/7варьирует в пределах всего лишь одного порядка), так чтоТ*(эВ)~2.10-11(NiNe)2/7.Для систем с магн. удержанием плазмы (напр., приNi-Nе~1014см-3) T*~2.10-3эВ, а т. к. типичная термоядерная темп-pa TT/Я~104эВ, то тормозное излучение разреженной термоядерной плазмы является чисто объёмным; оно в (TT/Я/T*)7/2~а*/а раз, т. е. на много порядков меньше излучения чёрного тела. Лишь для нек-рых систем с инерционным удержанием плазмы, напр, для лазерного УТС, представляют интерес плотностиNi=Neвплоть до 1027см-3, к-рым соответствует T*~6.104эВ>TT/Я, так что здесь эффект запирания ТИ в плазме уже существен. эф аeH/mcЪT/h.Это предопределяет гораздо большую роль реабсорбции ЦИ, чем, напр., намного более "жёсткого" ТИ. Роль поверхностного предела РП циклотронного излучения (к к-рому близки и реальные потери) здесь играет проинтегрированная от w=0 до нек-рой макс, частоты w* рэлей - джинсовская спектральная интенсивность, т. е. величина Tw*3/12p2c2, см. рис. 4. Значение w* соответствует оптич. толщине системы ((w*)[email protected] Номер наивысшей "запертой" гармоники ЦИk*w*/w0Hможно оценить по ф-ле

Для типичных параметров плазмыk*а10,так что радиационные потери на ЦИ на несколько порядков превышают рэлей - джинсовскую величину для w[w0H. Но поскольку гл. вклад в объёмную излучат.
вносят осн. частота и её ближайшие обертоны (фактически сильно запертые), реальные потери на ЦИ все ещё значительно меньше "потенциально возможных", объёмных РП. туш~[(b+l)/b]v(-1(w0), гдеv=1/2, @1 и 2 соответственно для монохроматич., доплеровского и лоренцовского профилей линии.

Рис. 4. Спектр циклотронного излучения термоядерной плазмы. Пунктир - планковская (рэлей - джинсовская) интенсивность излучения чёрного тела.

Видно, что при bЪ1 система, оптически толстая в центре линии [((w0)ад1], может излучать как оптически тонкая, т. е. из всего объёма.
И. п. и диагностика плазмы.Наблюдение спектров И. п. в разл. диапазонах длин волн А (или энергий E=) с разл. спектральным разрешением l/Dl (или E/DE)позволяет получить разнообразную информацию о физ. процессах внутри плазмы (см.Диагностика плазмы).На рис. 5 представлен спектр рентг. излучения периферийной области термоядерной плазмы токамака Т-10 (Tе=0,4 кэВ, Ne=l,5.1013см-3) с примесью аргона (Z=18). Непрерывный спектр образован ТИ и ФИ электронов на протонах и ионах аргона.

Рис. 5. Непрерывный спектр излучения горячей водородной плазмы: (+) - с примесью аргона; ( о ) - без примеси.

Угол наклона спектра определяет темп-ру электроновТе.На рис. 5 ясно видны два пика. Первый (при E~4 кэВ) является скачком ФИ, соответствующим рекомбинации электронов на уровень n=1 водородоподобного иона аргона; второй пик (при E~3кэВ) -Кa-линия ионизованного аргона. Линии этого типа обладают сложной структурой, образующейся в результате 2р-1s-переходов в ионах разл. кратности ионизации при разл. механизмах образования вакансии ("дырки") в 1s2-оболочке. На рис. 6 показана структура линии железа, снятая в нач. (а) и конечной (б)стадиях солнечной вспышки. Основная (w)линия соответствуетдипольно-разрешённому переходу в гелиеподобном ионе Fe XXV, др. линии (х, у, tи т. д.) - либо запрещённым переходам, либо переходам в более сложных ионах (Fe XXIV, Fe XXIII и т. д.). В конце вспышки полная интенсивностьw-линии уменьшается (примерно в 6 раз) и возрастает доля ионов низкой кратности ионизации.

Рис. 6. Структура рентгеновской К-линии железа вблизи основного перехода2р - 1sв ионе FeXXV в начальной (а) и конечной (б) стадиях солнечной вспышки. Масштаб величины I(l) на рис. а и б различается примерно в 6 раз.

Наблюдения таких спектров в астрофиз. и лабораторной плазме позволяют определить темп-рыТеиТiи распределение ионов по кратностям ионизации. pe.Лит.:3ельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966; Грим Г., Спектроскопия плазмы, пер. с англ., M., 1969; Б е к е ф и Д ж., Радиационные процессы в плазме, пер. с англ., М., 1971; Вайнштейн Л. А., Собельман И. И., Ю к о в Е. А., Возбуждение атомов и уширение спектральных линий, М., 1979; Биберман Л. М., Воробьев B.C., Якубов И. Т., Кинетика неравновесной низкотемпературной плазмы, М., 1982; Вопросы теории плазмы, под ред. М. А. Леонтовича и Б. Б. Кадомцева, в. 12-13, М., 1982-84; Гервидс В. И., Коган В. И., Лисица В. С., Многозарядные ионы и излучение плазмы, в сб.: Химия плазмы, под ред. Б. М. Смирнова, в. 10, М., 1983.В. И. Коган, В. С. Лисица.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.Главный редактор А. М. Прохоров.1988.


  1. излучение плазмыplasma radiation...Русско-английский политехнический словарь
  2. излучение плазмыplasma radiation...Русско-английский словарь по физике
  3. излучение плазмыplasma radiation...Русско-английский технический словарь
  4. излучение плазмыirraggiamento del plasma...Русско-итальянский политехнический словарь