Философская энциклопедия

ФИЗИКА

ФИЗИКА
(греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших области – структурную Ф., физику взаимодействий (Ф. поля) и Ф. д в и ж е н и я (механику).
Науки, образующие структурную Ф., довольно четко различаются по изучаемым объектам, к-рыми могут быть как элементы структуры вещества (элементарные частицы, атомы, молекулы), так и более сложные образования (плазма, кристаллы, жидкости, звезды). По мере открытия новых уровней структуры и состояний вещества объектная область структурной Ф. расширяется. Сейчас она охватывает все известные уровни строения вещества – от элементарных частиц до галактик.
Ф. взаимодействий, основанная на представлении о поле как материальном носителе взаимодействия, делится на четыре отдела, соответственно четырем известным видам взаимодействий (сильное, электромагнитное, слабое, гравитационное).
Ф. движения (механика) включает в себя классическую (ньютонову) механику, релятивистскую (эйнштейновскую) механику, нерелятивистскую квантовую механику и релятивистскую квантовую механику.
Особое место в совр. системе физич. наук занимает с т а т и с т и ч.Ф., представляющая собой теорию поведения ансамблей – совокупностей большого количества частиц (см. Статистические и динамические закономерности). Будучи основана на определ. предположениях о структуре ансамблей и характере взаимодействия и движения частиц ансамбля, статистич. Ф. сочетает в себе черты всех трех осн. областей Ф. Ее методы применяются во всех разделах Ф.
При решении конкретных физич. задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются. Так, Ф. атома, будучи разделом структурной Ф., необходимо включает в себя конкретные представления о характере движения и взаимодействия образующих атом частиц – ядра и электронов, т.е. может рассматриваться с т. зр. и Ф. взаимодействий и Ф. движения. Тем не менее приведенное подразделение комплекса физич. наук имеет определ. смысл, ибо выявляет те осн. категории, к-рые играли роль общих методологич. средств построения физич. картины мира на всех этапах истории Ф.
Изложенная т. зр. на предмет Ф. не является единственной. Часто Ф. определяют как науку о таких формах материи ("первичных", "элементарных"), к-рые входят в состав любых материальных систем, о структуре этих форм, их взаимодействии и движении. В этом случае структуру самой Ф. определяют, исходя из многообразия исследуемых в ней форм материи и характерных для них видов движения (Ф. атома, Ф. твердого тела, Ф. тяготения, Ф. колебаний и т.д.), и специально выделяют такие ее разделы, к-рые охватывают вое многообразие явлений, происходящих при нек-рых определ. условиях, – Ф. низких температур, Ф. сверхвысоких давлений и т.п. (подробнее о др. подходах к определению предмета Ф. – см. И. В. Кузнецов, К вопросу об определении предмета совр. Ф., в кн.: Нек-рые философские вопросы естествознания, М.. 1957; С. И. Вавилов, Физика, Собр. соч., т. 3, М., 1956, с. 148–64; А. Ф. Иоффе, Физика, БСЭ, 2 изд., т. 45, М., 1956; Физика, в кн.: Физический энциклопедический словарь, т. 5, М., 1966).
Обладая наиболее развитыми математическими и экспериментальными средствами исследования, Ф. занимает ведущее место среди естеств. наук. Ее представления, результаты и методы используются всеми без исключения естеств. науками. Это приводит к образованию многочисленных "стыковых" дисциплин (геофизика, физич. химия, химич. Ф., астрофизика, биофизика и т.п.). Сама же Ф. вырабатывает свои средства с помощью философии (методологич. средства), математики (матем. аппарат физич. теорий) и техники (экспериментальные средства), оказывая обратное влияние на развитие этих областей знания.
Уже в глубокой древности возникли зачатки знаний, впоследствии вошедшие в состав Ф. и связанные с простейшими представлениями о длине, тяжести, движении, равновесии и т.п. В недрах греч. натурфилософии сформировались зародыши всех трех частей Ф., однако сначала на первом плане стояла Ф. движения, понимаемого в самом широком смысле – как изменение вообще. Взаимодействие отд. вещей трактовалось наивно-антропоцентрически (напр., мнение об одушевленности магнита у Фалеса). Подробное рассмотрение проблем, связанных с анализом движения как перемещения в пространстве, впервые было осуществлено в знаменитых апориях Зенона Элейского. В связи с обсуждением структуры первоначал зарождаются и конкурируют концепции непрерывной делимости до бесконечности (Анаксагор) и дискретности, существования неделимых элементов (атомисты). В этих концепциях закладывается понятийный базис будущей структурной Φ. В связи с задачами анализа простейшей формы движения (изменения по месту) возникают попытки уточнения понятий "движение", "покой", "находиться в...", "место", "время", "движение", "пустота". Результаты, полученные на этом пути, образуют основу понятийного аппарата будущей Ф. движения – механики. При сохранении антропоморфных тенденций у атомистов четко намечается понимание взаимодействия как непосредств. столкновения осн. первоначал – атомов. Полученные умозрит. путем достижения греч. натурфилософии вплоть до 16 в. служили единств. средствами построения картины мира в науке. Матем. средства (в основном геометрические) служили при этом лишь для описания наблюдений и иллюстрации словесных рассуждений. Эксперимент существовал лишь в виде отд. зачатков (эмпирики).
Превращение Ф. в самостоят. науку обычно связывается с именем Галилея. Осн. задачей Ф. он считал эмпирич. установление количеств, связей между характеристиками явлений и выражение этих связей в матем. форме с целью дальнейшего исследования их матем. средствами, в роли к-рых выступали геометрич. чертежи и арифметич. учение о пропорциях. Использование этих средств регулировалось сформулированными им осн. принципами и законами (принцип относительности, принцип независимости действия сил, закон равноускоренного движения и др.). Достижения Галилея и его современников в области Ф. движения (Кеплер, Декарт, Гюйгенс) подготовили почву для работ Ньютона, приступившего к оформлению целостного предмета механики в систему понятий. Продолжая методологич. ориентацию на принципы, а не на скрытые причины (hypothesis non fingo), Ньютон сформулировал три закона (аксиомы) движения и вывел из них ряд следствий, трактовавшихся прежде как самостоят. законы. Ньютоновские "Математические начала натуральной философии" подвели итоги работы по установлению смысла и количеств. характеристик осн. понятий механики – "пространство", "время", "масса", "количество движения", "сила". Для решения задач, связанных с движением, Ньютон (вместе с Лейбницем) создал дифференциальное и интегральное исчисления, одно из самых мощных матем. средств Ф. Начиная с Ньютона и вплоть до конца 19 в. механика трактуется как общее учение о движении (понимаемом как перемещение в пространстве) и становится магистральной линией развития Ф. С ее помощью строится Ф. взаимодействий, где конкурируют концепции близкодействия и дальнодействия. Потребности концепции близкодействия вызвали к новой жизни антич. представления об эфире (Декарт). Успехи небесной механики, основанные на ньютоновском законе всемирного тяготения, способствовали победе концепции дальнодействия (согласно к-рой гравитац. взаимодействие между частицами вещества осуществляется мгновенно и непосредственно через пустоту с помощью дальнодействующих сил). По образцу теории тяготения строилась и Ф. взаимодействий в области электричества и магнетизма (Кулон).
Успехи гидродинамики (Бернулли, Эйлер) способствовали внедрению в Ф. идей непрерывности на основе представлений о невесомых жидкостях (флюидах). Как флюиды трактовались электричество, магнетизм и теплота. Юнг и Френель развивали теорию света как волн в непрерывном эфире, также рассматривавшемся как флюид. Начиная с Дальтона, введшего понятие атомного веса, атомистика отделяется от философии, а химия обретает статус фундаментальной науки. Представления об атомах и молекулах, перенесенные из химии в Ф., постепенно вытеснили невесомые флюиды. Юнг (1816) дал первую количеств. оценку размеров молекулы. Усилиями Бернулли, Клаузиуса, Максвелла была построена (в опоре на статистич. представления) кинетич. теория газов, дальнейшее развитие к-рой Больцманом и Гиббсом позволило объяснить тепловые явления без помощи теплорода.
С Фарадея начинается интенсивное развитие Ф. электричества и магнетизма на основе идеи близкодействия. Переход от электростатики к электродинамике (Фарадей, Эрстед, Ампер) позволил объединить электрические и магнитные явления. Фарадеевские представления о поле как особом состоянии эфира были оформлены Максвеллом в строгую матем. теорию, к-рая с единой т. зр. трактовала электрические, магнитные и оптич. явления.
К концу 19 в. Ф. представляла собой развитый комплекс дисциплин, объединенных идеей сохранения и превращения энергии (см. Сохранения принципы). Мн. ученым Ф. казалась принципиально завершенной наукой. Филос. фоном ее было механистич. мировоззрение, представлявшее собой синтез атомизма с доктриной лапласовского детерминизма. Вероятностные представления статистич. Ф. трактовались как всецело обусловленные незнанием точных значений начальных импульсов и координат частиц, составляющих ансамбль. Электромагнитные явления многими еще не считались автономными – усилия большинства ученых были направлены на сведение их к механич. явлениям путем построения хитроумных моделей эфира.
Внутр. противоречия, возникшие при теоретич. объяснении результатов нек-рых опытов в рамках классич. картины мира, привели к возникновению новых, неклассич. направлений релятивистской и квантовой Ф. Релятивистская Ф., возникшая из необходимости объяснить отрицат. результат опыта Майкельсона (спец. относительности теория) и факта равенства инертной и тяжелой массы (общая теория относительности), стала Ф. быстрых движений и сильных гравитац. полей. Квантовая теория, появившаяся в связи с парадоксами объяснения наблюдаемого распределения энергии в спектре излучения абсолютно черного тела (Планк, 1900) явлениями фотоэффекта (Эйнштейн, 1905) и противоречиями планетарной модели атома (Бор, 1913), стала общей теорией взаимодействия и движения микрообъектов. В связи с этим претерпела радикальные изменения вся физич. картина мира. В Ф. движения спец. теория относительности (Эйнштейн, 1905) сделала ненужным представление об эфире как абс. системе отсчета. Это дало возможность и в Ф. взаимодействий отказаться от эфира и приписать полю самостоят. существование.
Сначала теоретически, а затем экспериментально и промышленно (ядерная энергетика) установленные связь массы и энергии (Е=mс2), а также зависимость массы движущегося тела от скорости его движения покончили с резким противопоставлением материи и движения, характерным для классич. Ф. Постулат о постоянстве скорости света во всех инерциальных системах отсчета и распространение принципа относительности на электромагнитные явления показали относительность количеств, определенности пространственных и врем. промежутков. Это привело к понятию единого четырехмерного пространственно-врем. континуума и ликвидировало разобщенность понятий пространства и времени, свойственную классич. механике. Общая теория относительности (Эйнштейн, 1916), интерпретировавшая поле тяготения как искривление пространства-времени, обусловленное наличием материи, перекинула еще один мост от материи и движения к взаимодействию.
Создание в 20-х гг. 20 в. квантовой механики, основанной на представлении о дискретной природе действия (существование миним. кванта действия ħ) (Бор, Борн, Гейзенберг, де Бройль, Шрёдингер, Паули и др.), привело к дальнейшему изменению представлений о движении и взаимодействии, сделав невозможным применение понятия траектории к анализу движения микрообъектов. Релятивистская квантовая механика (Дирак, Паули, Гейзенберг, В. А. Фок, Дайсон, Р. Фейнман, Ю. Швингер и др.), наряду с пространств.-врем. перемещением элементарных частиц, сохраняющим их тождественность и регулируемым законами сохранения энергии и импульса, стала рассматривать их взаимопревращения (см. Микрочастицы). Все эти, как и др. законы сохранения, являются в совр. Ф. следствиями общих свойств симметрии пространства-времени и взаимодействий.
В области структурной Ф. квантовые представления привели к тому, что концепция абсолютно элементарных, неделимых единиц структуры – атомов, уступила место представлениям об относительности понятий элементарности и сложности, о чем в свое время говорил еще Ленин. Релятивистская квантовая теория поля, объединив в едином понятии квантованного поля понятия частицы и поля, преодолела резкое противопоставление пространств. дискретности вещества (взаимодействующих частиц) и пространств. непрерывности поля (переносчика взаимодействия), характерное для классич. Ф. и сохранившееся в нерелятивистской квантовой механике. Изменились и др. связи структурной Ф. с Ф. взаимодействий. В классич. Ф. (включая релятивистскую) результаты взаимодействия целиком определялись пространств.-врем. структурой взаимодействующих объектов (координатами и скоростями – для частиц, напряженностью или потенциалом в каждой точке пространства и законом изменения их во времени – для полей). Знание характеристик элементов структуры позволяло определить состояние системы в целом. Т.о., Ф. взаимодействий была логически вторичной по отношению к структурной Ф.
В современной квантовой Ф. дело обстоит наоборот – на первый план выдвинулась Ф. взаимодействий и ответ на вопрос о строении микрообъектов определяется результатами взаимодействия данной микрочастицы с другими. В связи с этим существенно изменились требования к способу задания состояния микрообъектов в теории. Во-первых, волновая функция относится к системе в целом. Во-вторых, энергетически-импульсные характеристики микрообъектов (потенциальные характеристики их взаимодействия) в квантовой механике являются логически равноправными и, что особенно важно, независимыми по отношению к их пространств.-врем. характеристикам. Наиболее отчетливо логич. первичность взаимодействия по сравнению с пространств.-врем. структурой проявляется в Ф. элементарных частиц. Если в Ф. атома и атомного ядра характеристикам взаимодействия еще могут быть сопоставлены пространств.-врем. модели взаимодействующих объектов (типа боровских орбит, распределения плотности заряда в атомах, различных моделей ядра), дающие нек-рую пространств.-врем. картину механизма взаимодействия, то в Ф. элементарных частиц это можно сделать в гораздо меньшей степени. Элементы структуры атома (ядро и электроны) и атомного ядра (протоны и нейтроны) еще могут считаться существующими "в недрах" исходных частиц до взаимодействия, к-рое приводит лишь к перераспределению этих элементов. Элементарные частицы до взаимодействия могут рассматриваться состоящими из двух элементарных частиц лишь весьма условно. Это находит свое выражение в понятии "виртуальности" элементов структуры элементарных частиц: виртуальные частицы как элементы структуры реальных элементарных частиц характеризуют лишь возможные результаты порождения новых реальных элементарных частиц при взаимодействии исходных реальных частиц. Еще более виртуальными являются т.н. квазичастицы в Ф. полупроводников и Ф. твердого тела, позволяющие трактовать возбуждение состояния макротел как результат существования, движения и взаимодействия квазичастиц. Как и многие другие модельные представления, квазичастицы служат для теоретич. объяснения макроскопически наблюдаемых явлений в твердых и жидких телах. Т.о., совр. теория структуры элементарных частиц приобретает существенно динамич. характер. По сути дела, современная квантовая Ф., вскрыв ограниченность пространств.-врем. описания микромира на языке классич. понятий координаты и скорости, дала более глубокое его описание на языке ψ-функции и ограничила свои задачи описанием и предсказанием всех возможных макроскопически наблюдаемых результатов взаимодействия. Эта черта совр. Ф., считающаяся мн. учеными временной, наиболее ярко проявляется в формализме s-матрицы, представляющем собой физич. воплощение кибернетич. идей "черного ящика".
Совр. Ф. взаимодействий значительно расширила свою объектную область, включив в рассмотрение, наряду с гравитационными и электромагнитными, сильные (ядерные) и слабые (β-распадные) взаимодействия, проявляющиеся только в микромире. Факт наличия четырех существенно различных видов взаимодействий постоянно поддерживает зародившиеся еще в классич. Ф., но пока безуспешные стремления построить общую теорию поля.
В статистич. Ф., куда также проникли квантовые идеи о движении и взаимодействии, оформляется в самостоят. ветвь статистич. Ф. процессов (физич. кинетика).
Достижения Ф. в 20 в. значительно повлияли на конкретные представления о смысле таких филос. категорий, как материя, движение, пространство и время. К числу фундаментальных достижений совр. Ф., имеющих общефилос. значение, относится также установление принципа относительности свойств материальных объектов. Это связано с последоват. учетом в понятийном аппарате теории роли материального окружения объекта (в первую очередь измерит, прибора и системы отсчета) в деле определения этих свойств. Классич. Ф. считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Уже теория относительности вскрыла количеств. относительность таких свойств объектов, как длина, время жизни, масса, зависящих, как оказалось, не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количеств, определенность свойств объекта должна быть отнесена не к нему "самому по себе", а к системе "объект+система отсчета", хотя носителем качеств. определенности свойств по-прежнему оставался сам объект. Квантовая теория пошла еще дальше в этом направлении, выдвинув идею дополнительности (см. Дополнительноcти принцип). Существование дополнит. свойств, не объяснимое с т. зр. принципа абсолютности свойств, получает естеств. объяснение с помощью принципа относительности свойств. С т. зр. последнего, термин "свойство объекта" следует рассматривать в плане "виртуальности" – как характеристику потенциальных возможностей объекта, к-рые реализуются только при наличии второго объекта, взаимодействующего с первым. С квантовой Ф. связано также гораздо более широкое понимание причинности, опирающееся на отказ от характерного для классич. Ф. предположения, что в основе статистич. закономерностей всегда лежат однозначно определенные динамич. закономерности.
В концептуальных рамках релятивистской и квантовой теорий развитие Ф., для к-рого характерны все более последоват. отказ от применимости классич. представлений "в малом", все более абстрактная характеристика состояния, все меньшая наглядность, продолжается и в наст. время. Принципы и представления этих теорий служат фундаментом как для решения прикладных физико-технических и пром. задач (строительства ускорителей, реакторов, термоядерных установок и атомных электростанций), так и для формирования новых представлений о структуре, взаимодействии и движении при экстраполяции принципов на новые объектные области – в квантовой радиофизике, Ф. полупроводников, Ф. сверхпроводимости, Ф. плазмы, астрофизике и т.д. Задача синтеза релятивистских и квантовых принципов является одной из основных и до сих пор не решенных задач Ф. элементарных частиц, представляющей передний край современной теоретической и экспериментальной Ф.
В области экспериментальной Ф. осн. проблемы состоят, с одной стороны, в осуществлении целенаправленных экспериментов по проверке гипотез о структуре, строении и взаимодействии элементарных частиц, выдвигаемых физиками-теоретиками. С др. стороны, ведется поиск технич. средств, к-рые позволили бы проверить справедливость квантовых и релятивистских принципов на новой объектной области, ранее не доступной экспериментальному изучению (эксперименты с частицами высоких энергий – встречные пучки, космич. лучи).
В теоретич. Ф. осн. круг собственно физич. проблем связан с исследованием формальной структуры матем. аппарата, используемого в теории (попытки аксиоматизации теории поля, вопросы сходимости ряда в теории возмущений и т.п.). Осн. методами, используемыми в новейшей теоретич. Ф., являются теория поля, метод s-матрицы и теория групп. Они различаются как выбором матем. аппарата, так и предъявляемыми к нему требованиями. В теории поля, использующей для построения матем. моделей аппарат алгебры операторов в гильбертовом пространстве, упор делается на строгое матем. осмысливание теории, а не на детальное сравнение с опытом. В основе метода s-матрицы лежит матем. аппарат теории функций комплексного переменного. Оперирование матем. аппаратом производится без опоры на наглядные модельные представления, на основе аксиоматич. требований, предъявляемых к матем. характеристикам s-матрицы (аналитичность, унитарность и т.д.), связывающей состояния до и после взаимодействия. Этот метод в его совр. виде занимает промежуточное положение между случаем, когда создание строгой теории признается более важным (как в теории поля), нежели использование ограниченных и формальных методов (как в теории групп), и случаем, когда поиск ведется вне рамок к.-л. единой методич. концепции путем простого подбора тех или иных моделей с последующим отбрасыванием неудачных вариантов (как в ядерной Ф.).
Методы теории групп, основанные на учете связи типа симметрии состояния физич. объектов с инвариантами групп преобразований, позволили построить ряд абстрактных теорий симметрии сильно взаимодействующих частиц (адронов) – теорию SU3-симметрии, SU6-симметрии и т.п. Эти теории не используют никаких модельных представлений и опираются только на отвлеченные свойства групп. Будучи основаны на глубоких матем. идеях, подобно теории поля, методы теории групп, в отличие от нее, покоятся на прочной экспериментальной основе. Однако, выделяя только те аспекты природы, к-рые удается понять в рамках абстрактной симметрии, эти методы не дают возможности осмыслить численные значения времени жизни частиц и характер их взаимодействий. Поэтому громадный объем экспериментальных фактов (в т.ч. все, относящиеся к легким частицам – лептонам) находится вне поля зрения этих методов. Все три упомянутых метода остаются слишком ограниченными, отрывочными и неопределенными и поэтому рассматриваются ведущими физиками как предварит. достижения на пути к более общей теории, способы построения к-рой пока не ясны.
Методологич. проблемы новейшей Ф. так или иначе связаны с анализом роли матем. аппарата в построении физич. теорий. Это обусловлено существ, отличием характера использования математики в совр. Ф. В классич. Ф. теория обслуживала эксперимент, а матем. язык служил лишь рафинированным средством о п и с а н и я эмпирич. связей и о б ъ я с н е н и я их с помощью разного рода моделей (напр., как в случае отношения эмпирич. законов Бойля–Мариотта, Шарля и Гей-Люссака к распределению Максвелла, основанному на атомно-молекулярной модели строения вещества). Совр. Ф. отличается широким использованием математической гипотезы как метода исследования (хотя сам этот метод зародился уже в классич. Ф.), причем часто без опоры на модельные представления, руководствуясь почти исключительно матем. требованиями к характеру осн. уравнений. Это выдвигает теоретич. уровень исследования на первое место по сравнению с эмпирическим, за к-рым остаются только функции контроля – принципиальная проверка и количеств, уточнение результатов, полученных с помощью матем. гипотезы на теоретич. уровне. В случае успеха существование объектов или их характеристик, предположенное на теоретич. уровне, подтверждается эмпирически, что приводит к открытию новых частиц или эффектов. Именно таким путем были открыты в Ф. позитрон (первоначально предсказанный теоретически на основании интерпретации результатов решения уравнения Дирака), несохранение четности в слабых взаимодействиях (опыты By по проверке гипотезы Ли и Янга), Ω-мезон (на основании предсказания теории SU3-симметрии). Ряд объектов, возможность существования к-рых следует из нек-рых матем. гипотез, до сих пор экспериментально не обнаружены – гравитац. волны (их существование вытекает из интерпретации результатов определ. способа решения уравнений общей теории относительности), монополь Дирака (изолированный магнитный полюс, существующий согласно интерпретации одного из вариантов матем. оформления электродинамики), кварки (гипотетич. суперэлементарные частицы) и др.
Методологич. тенденция, идущая от классич. Ф., предписывает искать для каждого матем. выражения, фигурирующего в теории, соответствующий ему фрагмент физич. реальности. Эта тенденция может быть названа онтологической, ибо в ней в качестве принципа интерпретации провозглашается своеобразный принцип параллелизма между матем. формой и физич. содержанием теории. Согласно этому принципу, матем. аппарат теории непосредственно отражает (изоморфно или гомоморфно) объекты, свойства и отношения реального мира как таковые, так что матем. символы являются знаками элементов реальности, а структура матем. выражений воспроизводит структуру реального мира физич. объектов и их взаимодействий.
С этой методологич. тенденцией в совр. Ф. успешно конкурирует тенденция к эмпирич. интерпретации матем. аппарата физич. теории. Принцип такой интерпретации иногда называют "началом принципиальной наблюдаемости". При эмпирич. интерпретации матем. символы теории трактуются как обозначающие результаты реальных эмпирич. процедур, причем физич. смыслом обладают далеко не все из символов. Нек-рые из них, служащие промежуточным средством для вычислений, не получают никакой интерпретации и рассматриваются как вспомогательные. Последоват. приверженцы эмпирия, интерпретации единственно достаточным условием истинности физич. теории считают ее способность к предсказаниям, оправдывающимся на опыте, и не делают из факта успешности подобных предсказаний вывода о сходстве структуры матем. аппарата теории со структурой реальности. Наиболее последовательно принцип эмпирич. интерпретации осуществляется совр. Ф. в методе s-матрицы.
Выражением борьбы тех же принципов интерпретации является полемика вокруг интерпретации квантовой механики (точнее, ее матем. аппарата). Так, ψ-функция, задающая состояние микрообъектов, интерпретируется сторонниками онтологич. интерпретации (Д. Бом, Л. до Бройль, А. Яноши и др.) как отображение нек-рого объективно существующего волнового поля. Сторонники же эмпирич. интерпретации (копенгагенская школа и ее разновидности) считают ψ-функцию лишь промежуточным средством расчета результатов реальных экспериментов.
С проблемой интерпретации в совр. Ф. тесно связана проблема реальности – проблема принципов построения картины мира. Обычно эту картину строят на базе принципов онтологич. интерпретации – путем онтологизации матем. аппарата теории (именно так появились в совр. Ф. представления о двойственной корпускулярно- волновой природе микрообъектов, о кварках и т.п.). При этом изменение вида используемого в теории матем. аппарата влечет за собой изменение онтологич. представлений. Иногда онтологизируются не матем. выражения, а модельные представления, управляющие оперированием с этими выражениями (как, напр., в ядерной Ф.). Полученная подобным способом физич. картина мира считается образом реальности, лежащей на ненаблюдаемом уровне. Сторонники эмпирич. интерпретации склоняются к тому, чтобы употреблять термин "реальность" и конкретизировать его смысл только на эмпирич. уровне исследования, принципиально отказываясь придавать онтологич. смысл гипотезам о характере непосредственно не наблюдаемых объектов. Промежуточной является позиция М. Борна, считающего образами реальности инварианты, фигурирующие в матем. аппарате теории.
Поиск "сумасшедших идей", столь актуальный в совр. Ф., с т. зр. проблемы реальности представляет собой проблему существенно новых принципов построения физич. картины мира, к-рые позволили бы придать теории элементарных частиц логич. замкнутость и полноту. Большинство ученых считает, что принципов квантовой механики и теории относительности недостаточно для осуществления этой цели. Однако отсутствие ощутимых успехов в преодолении этой недостаточности вынуждает при решении конкретных задач до сих пор ограничиваться лишь незначит, модификациями квантово-релятивистского концептуального аппарата, не затрагивающими его принципиальных основ.
Лит.:Дюгем П., Физич. теория, ее цель и строение, пер. с франц., СПБ, 1910; Планк М., Физич. очерки, пер. с нем., М., [1925]; Гейзенберг В., Филос. проблемы атомной Ф., пер. [с англ.], М., 1953; его же, Ф. и философия, пер. с нем., М., 1963; Кудрявцев П. С, История Ф., [2 изд.], т. 1–2, М., 1956; Лауэ М., История Ф., пер. с нем., М., 1956; Нильс Бор и развитие физики. Сб. [ст.], М., 1958; Очерки развития осн. физич. идей. Сб. ст., М., 1959; Филос. вопросы совр. физики. Сб. ст., М., 1959; Бор Н., Атомная Ф. и человеч. познание, пер. с англ., М., 1961; Бройль Л. де, По тропам науки, пер. с франц., М., 1962; его же, Революция в Ф., пер. с франц., 2 изд., М., 1965; Теоретич. физика 20 века, М., 1962; Над чем думают физики, вып. 1–4, М., 1962–65; Развитие совр. Ф. Сб. ст., М., 1964; Борн Μ., Φ. в жизни моего поколения. Сб. ст., М., 1963; Филос. проблемы Ф. элементарных частиц, М., 1963; Спасский Б. И., История Ф., ч. 1–2, М., 1963–64; Эйнштейн Α., Φ. и реальность. Сб. ст., пер. с нем. и англ., М., 1965; Ландау Л. Д., Лифшиц В. М., Теоретич. физика, 2 изд., т. 1–9, М., 1965; Фейнмановские лекции по Ф., [пер. с англ.], вып. 1–8, М., 1965–66; Кузнецов Б. Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, 2 изд., М., 1966; Эйнштейн Α., Инфельд Л., Эволюция Ф., пер. с англ., 4 изд., [М.], 1966; Campbell N. R., Physics. The elements, Camb., 1920; Lenzen V. Г., The nature of physical theory, N. Y., 1931; Bridgman P. W., The nature of physical theory, Princeton, 1936; Planck M., The philosophy of physics, N. Y., [1936]; Stebbing L. S., Philosophy and the physicists, L., [1937]; Frank Ph., Between physics and philosophy, Camb., 1941; Destouches J. L., Principes foundamentaux de physique théorique, P., [1942]; Lindsay R. В., Margenau H., Foundations of physics, [5 ed.], N. Y.–L., [1947]; Eddington Α., The philosophy of physical science, Camb., 1949; Margenau H., The nature of physical reality, N.Y., 1950; Destouches-Février P., La structure des théories physiques, P., 1951; Weizsäcker C.F. von, Zum Weltbild der Physik, 6 Aufl., Stuttg., 1954.
И. Алексеев, Ю. Румер. Новосибирск.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия.Под редакцией Ф. В. Константинова.1960—1970.


Синонимы:
агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика


  1. физиканаукаstrong относительно основа материяstrong физика наука об основах строении материи.механика. статика. кинематика. динамика.магнитогидродинамика.термодинамика. кине...Идеографический словарь русского языка
  2. физикаФИЗИКА Науки делятся на две группы на физику и собирание марок. Эрнест Резерфорд Существует лишь то что можно измерить. Макс Планк Когда видишь уравнение Е mс[sup][sup]...Англо-русский словарь афоризмов, русские афоризмы
  3. физикаФИЗИКА strongпозднее название сочинения Аристотеля strongв книгах которое в греческих рукописях и у древних комментаторов называется Лекции по физике . strongДошедшая ...Античная философия
  4. физиканаука об общих формах движения и взаимодействия материальных объектов. Изучает элементарные частицы атомные ядра атомы молекулы твердые тела жидкости газы плазму а также ...Астрономический словарь
  5. физикаФИЗИКА. СодержаниеI. Предмет и структура физикиII. Основные этапы развития физикиIII. Фундаментальные теории физикиIV. Современная экспериментальная физика.V. Некоторые н...Большая советская энциклопедия
  6. физикаI. Предмет и структура физикиstrong strongФ. наука изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы свойства и строение материи и закон...Большая Советская энциклопедия II
  7. физикаж. fisica прикладная теоретическая физика fisica applicata teorica химическая физика fisica chimica fisiochimica ядерная физика fisica nucleare Итальянорусский слова...Большой итальяно-русский и русско-итальянский словарь
  8. физикажPhysik f агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордопляс...Большой немецко-русский и русско-немецкий словарь
  9. физикафизика ж Physik fСинонимы агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы м...Большой немецко-русский и русско-немецкий словарь
  10. физикаж.fsica fя фиuзика fsica aplicada...Большой русско-испанский словарь
  11. физикасущ. жен. рода только ед. ч.одна из наук естествознания о свойствах и строении материи формах ее движения и измененияфзика квантовая физика квантова фзика от словаem физ...Большой русско-украинский словарь
  12. физикаж. physique f ядерная физика physique nuclaire...Большой русско-французский словарь
  13. физикаот греч. physis природа наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие этой общности Ф. и ее законы лежат в ...Большой толковый социологический словарь II
  14. физикаж.physique fядерная физика physique nuclaire агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация...Большой французско-русский и русско-французский словарь
  15. физикагреч. tа physika наука о природе от physis природа наука о строении материи и о простейших формах е движения и взаимодействия. Совр. Ф. исследует элементарные частицы ...Большой энциклопедический политехнический словарь
  16. физикагреч. ta physika от physis природа наука о природеизучающая простейшие и вместе с тем наиболее общие свойства материальногомира. По изучаемым объектам физика подразделя...Большой энциклопедический словарь II
  17. физикаФИЗИКА греч. ta physika от physis природа наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика п...Большой Энциклопедический словарь V
  18. физикагреч. ta physika от physis природа наука о природе изучающая простейшие и вместе с тем наиб. общие свойства материального мира. По изучаемым объектам подразделяется на Ф...Естествознание. Энциклопедический словарь
  19. физикаФИЗИКА от греческого physis природа наука изучающая строение наиболее общие свойства материи и законы ее движения. В соответствии с изучаемым видом движения материальных...Иллюстрированный энциклопедический словарь
  20. физикаФИЗИКА и ж. physique нем. Physik ampLT physike ampLT physis природа. strong. устар. Физическое строение и состояние организма.em БАС. Большую часть времени провожу теперь...Исторический словарь галлицизмов русского языка
  21. физикаодна из осн. естеств. наук наук о природе основа совр. естествознания. Изучает наиболее общие свойства материи и формы ее движения мех. тепловую электромагнитную атомную ...История и философия науки. Энциклопедический словарь
  22. физикафизика....Киргизско-русский словарь
  23. физикафизика физический...Коми (зырянский)-русский словарь
  24. физикагр. природа наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам подразделяется на физику элементарных ч...Концепции современного естествознания. Словарь основных терминов
  25. физикагр. природа наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам подразделяется на физику элементарных ч...Концепции современного естествознания. Словарь основных терминов
  26. физикафизика...Крымскотатарско-русский словарь II
  27. физикаФизика physica doctrina de rerum natura...Латинский словарь
  28. физикаи ж.em Наука изучающая общие закономерности явлений природы свойства и строение материи и законы ее движения.Теоретическая физика. чего.em Раздел этой науки посвященный и...Малый академический словарь
  29. физикакорень ФИЗ суффикс ИК окончание А Основа слова ФИЗИКВычисленный способ образования слова Суффиксальный ФИЗ ИК А Слово Физика содержит следующие морфемы или части ...Морфемный разбор слова по составу
  30. физикаФИЗИКАstrong наука занимающаяся изучением ВЕЩЕСТВА и ЭНЕРГИИ. Физика стремится установить и объяснить их многочисленные формы и взаимосвязи. Современная физика считает чт...Научно-технический энциклопедический словарь
  31. физикаот греч. physike physis природа наука изучающая наиболее общие свойства материального мира а именно существующие формы материи и ее строение атомы молекулы ядра элемент...Начала современного естествознания
  32. физикафизика . ж. Научная дисциплина изучающая наиболее общие свойства материального мира свойства и строение материи формы ее движения и изменения. Учебный предмет содержащи...Новый толково-словообразовательный словарь русского языка
  33. физикафизика физика и...Орфографический словарь
  34. физикаu ж агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордоплясия мор...Орфографический словарь русского языка
  35. физикафизика...Орысша-қазақша «Математика» терминологиялық сөздік
  36. физикаphysique f...Политехнический русско-французский словарь
  37. физикафизика физики физики физик физике физикам физику физики физикой физикою физиками физике физиках...Полная акцентуированная парадигма по Зализняку
  38. физикаОрфографическая запись слова физика Ударение в слове физика Деление слова на слоги перенос слова физика Фонетическая транскрипция слова физика [физк] Характеристика всех...Полный фонетический разбор слов
  39. физикафизика иСинонимы агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мо...Русский орфографический словарь
  40. физикаЖ fizika....Русско-азербайджанский словарь
  41. физикаphysics...Русско-английский аэрокосмический словарь
  42. физикаphysics...Русско-английский морской словарь
  43. физикаphysics физика ж.uphysicsфизика атмосферы aerophysicsатомная физика atomic physicsфизика атомного ядра nuclear physicsфизика высоких давлений highpressure physicsфиз...Русско-английский политехнический словарь
  44. физикаж....Русско-английский психологический словарь
  45. физикафизика ж.iphysics...Русско-английский словарь
  46. физикафизика ж. physics ядерная физика nuclear physics....Русско-английский словарь II
  47. физикаf. агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордоплясия морд...Русско-английский словарь математических терминов
  48. физикаphysics...Русско-английский словарь по авиации
  49. физикаphysics...Русско-английский словарь по нефти и газу
  50. физикаж. пакетная физика адронная физика атомная физика биологическая физика вычислительная физика квантовая физика классическая физика кометная физика космическая физика лазер...Русско-английский словарь по физике
  51. физикаphysics...Русско-английский словарь по электронике
  52. физикаphysics...Русско-английский строительный словарь
  53. физикаphisics physics атомная физика квантовая физика нейтронная физика прикладная физика физика атмосферы физика Земли физика кристаллов физика металлов физика моря физика пла...Русско-английский технический словарь
  54. физикаN...Русско-армянский словарь
  55. физикаФзка теоретическая физика тэарэтычная фзка прикладная физика прыкладная фзка физика атома фзка атама...Русско-белорусский словарь
  56. физикафзка жен.iтеоретическая физика тэарэтычная фзкаприкладная физика прыкладная фзкафизика атома фзка атама...Русско-белорусский словарь II
  57. физикафuзка к физика атомная физика атомного ядра физика высоких энергий физика математическая физика молекулярная физика низкотемпературной плазмы физика плазмодинамических пр...Русско-белорусский словарь математических, физических и технических терминов
  58. физикафзка к...Русско-белорусский физико-математический словарь
  59. физикаfizika агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордоплясия ...Русско-венгерский словарь
  60. физикафизика ж...Русско-греческий словарь (Сальнов)
  61. физикафи агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордоплясия ...Русско-ивритский словарь
  62. физикаfisica...Русско-итальянский автомобильный словарь
  63. физикаж. fisica f физика атмосферы атомная физика физика атомного ядра физика высоких давлений физика высоких энергий физика грунтов физика жидкого тела физика звзд физика Зем...Русско-итальянский политехнический словарь
  64. физикаж. физика...Русско-казахский словарь
  65. физикаж. физика....Русско-киргизский словарь
  66. физикаwlxuприкладная физика теоретическая физика агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация...Русско-китайский словарь
  67. физикаFizika...Русско-крымскотатарский словарь
  68. физикафизика...Русско-крымскотатарский словарь II
  69. физикаfizika...Русско-латышский словарь
  70. физикаФизик...Русско-монгольский словарь
  71. физикаPhysik...Русско-немецкий политехнический словарь
  72. физикаж. Physik f....Русско-немецкий словарь
  73. физикаFysica...Русско-нидерландский словарь
  74. физикафизикаж ядерная теоретическая ....Русско-новогреческий словарь
  75. физика...Русско-персидский словарь
  76. физикаfizyka...Русско-польский словарь
  77. физикажfsica f агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика механика микрофизика морда мордализация мордасово мордасы мордень мордопляси...Русско-португальский словарь
  78. физикаФизикаfizikia...Русско-суахили словарь
  79. физикафизика физика...Русско-таджикский словарь
  80. физикаж физика ядерная ф. атомтш физикасы теоретическая ф. теоретик физика...Русско-татарский словарь
  81. физикаfizik fizik iфизика плазмы plazma fiziiфизика высоких энергий yksek enerji fizii агрофизика акустика гидродинамика кристаллооптика лицо личность магнитогидродинамика м...Русско-турецкий словарь
  82. физикаfizik атомная физика квантовая физика физика твердого тела ядерная физика...Русско-турецкий словарь по строительству и архитектуре
  83. физиканаук. фзика атомная физика квантовая физика классическая физика космическая физика математическая физика молекулярная физика релятивистская физика статистическая ...Русско-украинский политехнический словарь
  84. физикаfem ksem физик...Русско-финский словарь
  85. физикаfyzika...Русско-чешский словарь
  86. физикасущ.жен.физика матери тытймпе улшйнйвсене тпчекен йслйлйх ядерная физика ядро физики учебник физики физика учебнике...Русско-чувашский словарь
  87. физикаfysik.strong fysik...Русско-шведский словарь
  88. физикаFsika...Русско-эстонский словарь
  89. физикаФИЗИКАНауки делятся на две группы на физику и собирание марок. Эрнест Резерфорд Существует лишь то что можно измерить. Макс Планк Когда видишь уравнение Е тс становится...Сводная энциклопедия афоризмов
  90. физикаж.физика...Сербско-русский словарь
  91. физикагреч.em наука о природе. Будучи по своему характеру более синтетич. нежели аналитич. наукой Ф. др.греч. и эллинистич. периодов являлась составной частью философии и заним...Словарь античности
  92. физикатехнические показатели инвестиционного проекта например в газовой отрасли толщина стенки трубы диаметр рабочее давление протяженность.Синонимы агрофизика акустика гидрод...Словарь бизнес-сленга
  93. физикаНаука о природе...Словарь для разгадывания и составления сканвордов
  94. физикаФИЗИКА греч. от. physis природа. Наука имеющая своим предметом свойства тел и действия которые они оказывают одно на другое не изменяя своих составных частей. Словарь ин...Словарь иностранных слов русского языка
  95. физикафизика личность мордоплясия сусалы мордализация мордофиля харьковская область мордасово мордень ряшка рыло физия морда мордуленция лицо мурло рожа харя физиономия фотогра...Словарь синонимов II
  96. физикафизика личность мордоплясия сусалы мордализация мордофиля харьковская область мордасово мордень ряшка рыло физия морда мордуленция лицо мурло рожа харя физиономия фотогра...Словарь синонимов
  97. физикаh физикаbig сущ.жен.неод.i ед.твор. которые различны языком нравами и физикою и моралью.Пс....Словарь языка Грибоедова
  98. физикаФИЗИКА от греческого physis природа наука изучающая строение наиболее общие свойства материи и законы ее движения. В соответствии с изучаемым видом движения материальных...Современная энциклопедия
  99. физикаФИЗИКА греч . ta physika от physis природа наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика п...Современный энциклопедический словарь
  100. физикаI. физическое развитие физическая сила Ср.em Этот господин пользуясь своею чрезмерною физикоюem дозволил себе въехать мне в самую так сказать физиономию.Маркевич. Иван С...Толково-фразеологический словарь Михельсона
  101. физикаФизикаstrong иноск.em физическое развите физическая сила. Ср.em Этотъ господинъ пользуясь своею чрезмрною физикоюem дозволилъ себ въхать мн въ самую такъ сказать физономю...Толково-фразеологический словарь Михельсона (ориг. орф.)
  102. физикафизика сущ.em ж.em употр. сравн. часто Морфология нет чего физикиstrong чему физикеstrong вижу что физикуstrong чем физикойstrong о чм о физике . Физикойstrong называетс...Толковый словарь Дмитриева
  103. физикаФИЗИКА ж. греч. наука о природе о законах и явлениях ее обычно разумеют природу безорудную мертвую. Физические силы природы противопол. химические а более органические эт...Толковый словарь живого великорусского языка
  104. физикафизика [гр. physike lt physis природа] наука о наиболее общих свойствах материального мира о существующих формах материи и ее строении физ. поля элементарные частицы ато...Толковый словарь иностранных слов
  105. физика1ФИЗИКА и ас. . Одна из основных областей естествознания наука освойствах и строении материи о формах ее движения и изменения об общихзакономерностях явлений природы. Тео...Толковый словарь Ожегова
  106. физикаФИЗИКА физики ж. греч. physike. . только ед. Основная наука естествознания о формах движения материи ее свойствах и о явлениях неорганической природы состоящая из ряда ди...Толковый словарь русского языка II
  107. физикафизика физика и ж. Одна из основных областей естествознания наука о свойствах и строении материи о формах е движения и изменения об общих закономерностях явлений природы....Толковый словарь русского языка II
  108. физикаФИЗИКА и и ФИЗИЯ и ж. прост. То же что лицо в значение....Толковый словарь русского языка
  109. физикаФИЗИКА и ас. . Одна из основных областей естествознания наука о свойствах и строении материи о формах е движения и изменения об общих закономерностях явлений природы. Те...Толковый словарь русского языка
  110. физикаУдарение в слове физикаУдарение падает на букву иБезударные гласные в слове физика...Ударение и правописание
  111. физикаRzeczownik физика f fizyka f физик m fizyk m...Универсальный русско-польский словарь
  112. физикаФИЗИКА греч. physis природа наука о свойствах и законах движения материальных частиц вещества и поля о строении атомов о гравитационных электрических магнитных и т.п. в...Уфологический словарь-справочник
  113. физиканаука изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы свва и строение материи и законы е движения. Понятия Ф. и е законы лежат в основе ...Физическая энциклопедия
  114. физиканаука изучающая фундаментальные и наиболее общие свойства и законы движения объектов материального мира. Понятия физики и физические законы основа всего естествознания. ...Философия науки
  115. физикагреч. наука о природе от природа комплекс науч. дисциплин изучающих общие свойства структуры взаимодействия и движения материи. В соответствии с этими задачами совр...Философская Энциклопедия (в 5 томах)
  116. физикаот греч. physisприрода наука о природе изучающая простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие этого Ф. и ее законы лежат в основе все...Философский энциклопедический словарь
  117. физикафизика физики физики физик физике физикам физику физики физикой физикою физиками физике физиках Источник Полная акцентуированная парадигма по А. А. Зализняку . Синонимы а...Формы слова
  118. физикаФизика Ф. и ее задачи. Методы Ф. Гипотезы и теории. Роль механики и математики в Ф. Основные гипотезы Ф. вещество и его строение. Кинетическая теория вещества....Энциклопедический словарь
  119. физикаФ. и ее задачи. Методы Ф. Гипотезы и теории. Роль механики и математики в Ф. Основные гипотезы Ф. вещество и его строение. Кинетическая теория вещества. Дейст...Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
  120. физикаФИЗИКАот древнегреч. physis природа. Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца ...Энциклопедия Кольера II
  121. физикаФизикаstrong. Заимств. в Петровскую эпоху из лат. яз. где physicai наука о природе lt греч. physikai тж. суф. производного от physisi природа....Этимологический онлайн-словарь русского языка Шанского Н. М
  122. физикаI физикаI уже у Ф. Прокоповича см. Смирнов . Через польск. fizyka из лат. рhуsiса наука о природе от греч. или от природа.II физикаII рожа физиономия Лесков. Преобразова...Этимологический русскоязычный словарь Фасмера
  123. физикаЗаимств. в Петровскую эпоху из лат. яз. где physicaem наука о природе ampLT греч. physikaem тж. суф. производного от physisem природа.Синонимы агрофизика акустика гидрод...Этимологический словарь русского языка
  124. физикафизика I физикаI уже у Ф. Прокоповича см. Смирнов . Через польск. fizyka из лат. рhуsiса наука о природе от греч. или от природа.II физикаII рожа физиономия Лесков. ...Этимологический словарь русского языка (М. Фасмер.)
  125. физикаФранцузское physique.Немецкое Physik.Английское physics.Латинское physica наука о природе.Греческое physis природа.Слово физика греческое по происхождению но в русс...Этимологический словарь русского языка Семенова